Van Allen Probes and Mass Density Monitoring

Kyungguk Min¹, Jacob Bortnik^{1,3}, Andrew J. Gerrard¹, Jeongwoo Lee¹, Craig Kletzing²

- I. CSTR, NJIT, USA
- 2. UIOWA, USA
- 3. UCLA, USA

^{*}We acknowledge the entire EMFISIS team for providing data.

Plasma Mass Density, ρ

- -The most fundamental quantity
 - Serves as a medium that sustains plasma waves
 - Controls the time response of the magnetosphere to internal and external force
 - Controls coulomb collision
- Direct measurement is difficult as opposed to electron density.
- -Alternative: Infer ρ from the toroidal mode Alfvén waves
 - Technique has been refined for several decades
 - Added advantage: full field line mass variation can be resolved
- -Van Allen Probes can monitor the plasma mass density

Magneto-seismology

- Standing waves
 - Tension = B
 - Mass = plasma (ρ)
- -B and ρ $(V_A \sim B/\sqrt{\rho}) \rightarrow$ complete set of resonant f
- Conversely, resonant f and $B \rightarrow \rho$

n=1

n=4

n=2

n=5

n=3

n=6

Analogous to seismology

Singer et al. [1981]

EMFISIS and Toroidal Waves

- EMFISIS L3 Isec Bsm Oct 13 ~Nov 17 (about 95 orbits per SC)
- Data processing following
 Takahashi et al. [2007, 2010]
- -Adaptive sampling
- Maximum Entropy Method gives well defined peaks
- Criteria [Takahashi et al., 2007, 2010]:
 - $I.P_{yy}(f_{\mathsf{T}}) > P_{zz}(f_{\mathsf{T}})$
 - $2. P_{yy}(f_T) > 3 P_{xx}(f_T)$
 - $3. \Delta f_T \text{ (FWHM)} < 3 \text{ mHz}$

Mass Density Inversion for Event 2012-10-14 RBSP-B

Toroidal Frequencies: (~ 95 orbits per SC)

Harmonic Structure

Equatorial Mass Density, $ho_{\rm eq}$

$$\rho = \rho_{\rm eq} \left(\frac{LR_{\rm E}}{R}\right)^{\alpha}$$

with $\alpha = I$ (e.g. Denton et al. 2006)

$\rho_{\rm eq}$ from RBSP

RBSP A&B $\rho_{eq}(t, L>3)$: 13–Oct–2012 ~ 18–Nov–2012

Statistical $\rho(\lambda)/\rho_{eq}$ Variation

- Use samples from all MLT but 5<L<6
- $\rho(\lambda)$ Model:

$$\log_{10} \rho = c_2 \tau^2 + c_4 \tau^4 + \dots$$

$$au \equiv \int rac{ds}{V_A}$$
 Alfvén crossing time Denton et al. [2001, 2004]

flf_{T3} Histogram

Statistical $\rho(\lambda)$ Variation (Cont'd)

Summary

- Explored the potential of the magneto-seismology and the potential of RBSP to derive the mass density distribution
- -With the electric field from EFW, the detection rate will significantly increase
- In-situ electron density information will be very useful for interpretation
- Cross-calibration with particle measurement from HOPE instrument
- Fundamental quantity and should be understood. RBSP will help us

Back-up

Mass Density Inversion for Event 2012-11-13 RBSP-A

Equatorial Mass Density, $ho_{\rm eq}$

$$\rho = \rho_{\rm eq} \left(\frac{LR_{\rm E}}{R}\right)^{\alpha}$$

with $\alpha = 1$ (e.g. Denton et al. 2006)

$ho_{ m eq}$ at GEO

Takahashi et al. [2010]

$ho_{\rm eq}$ from RBSP

RBSP A&B $\rho_{eq}(t, L>3)$: 13–Oct–2012 ~ 18–Nov–2012

expansion

Statistical $\rho(\lambda)$ Variation (Cont'd)

CRRES

Denton et al. [2006]