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Plasma Mass Density, ρ

– The most fundamental quantity
• Serves as a medium that sustains plasma waves
• Controls the time response of the magnetosphere to 
internal and external force
• Controls coulomb collision

– Direct measurement is difficult as opposed to electron 
density.

– Alternative: Infer ρ from the toroidal mode Alfvén waves
• Technique has been refined for several decades
• Added advantage: full field line mass variation can be 
resolved

– Van Allen Probes can monitor the plasma mass density



Magneto-seismology

– Standing waves
• Tension = B
• Mass = plasma (ρ)

– B and ρ (VA ~ B/√ρ) → 
complete set of resonant f

– Conversely, resonant f and 
B → ρ

– Analogous to seismology
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field model. Dungey [1954] wrote out the equation for
the toroidal Alfvén wave in spherical coordinates. The
wave equation for toroidal Alfvén waves in dipole ge-
ometry is [Radoski and Carovillano, 1966; Denton and
Gallagher, 2000]
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divided by x

3, x = cos(µ) = sin(∏), µ is the polar angle
from the Earth’s dipole axis, ∏ is the magnetic latitude
(MLAT), Ωeq is the mass density at the magnetic equa-
tor (∏ = 0), and
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is the normalized frequency (= g in (2)). The radial
electric field/ v
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in (7) is required to vanish at the iono-
spheric boundaries at plus or minus x

i

. This boundary
might be chosen to correspond to a height of about 70
km based on Figure 3 of Hughes and Southwood [1976]
(height where E

x

levels out). Placing it at the usual
height of the peak Pederson conductivity would put
it at 100-120 km. Such locations lead to results that
are indistinguishable from those obtained putting the
boundary at ground level for all but the lowest L shells
(L ° 1 ø 1). (Denton and Gallagher [2000] were in
error to suggest a height of 950 km (0.15 RE) for the
ionospheric boundary. Fortunately, the diÆerence in fre-
quencies based this assumption is not great, an error of
5% at L = 2, and less error at larger L.)

Normally, (7) is solved by splitting the second or-
der diÆerential equation into two first order equations
(d2

y/d

2
x = f ! dy1/dx = f and dy/dx = y1) and

using a shooting code method [Press et al., 1997] to
solve for the eigenvalue f̄ . Kitamura and Jacobs [1968]
made full wave calculations of Alfvén wave frequency
and equatorial mass density for three mass density dis-
tributions. These distributions were not an excellent
choice, however, because they were so steep that the
ionospheric density contributed significantly in the cal-
culation of the frequencies. Cummings et al. [1969],
Schulz [1996], and Denton and Gallagher [2000] calcu-
lated frequencies based on (7) using a power law with
respect to geocentric radius to describe the mass density
field line distribution [Radoski and Carovillano, 1966],
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Given a value of Æ, the normalized frequency f̄ (8)
found from (7) is nearly constant over a large range

of L [Schulz, 1996; Denton and Gallagher, 2000]. For
instance, for Æ = 1 (recommended by Denton et al.
[2006b] for L = 5–8; see Section 4), f̄ is 0.33 for L > 5.7,
0.34 for L = 4.2–5.7, 0.35 for L = 3.4–4.2, 0.36 for L =
2.9–3.4, and 0.37 for L = 2.5–2.9. One could roughly
take f̄ = 0.36 and be accurate within about 10% for all
L > 2. Note that this is very similar to what we would
get from (5) if we use the equatorial value V

Aeq for
V

A

and substitute LR

E

for Lk (the coe±cient changes
from 0.5 to about 0.36). Other approximations have
been made for the eigenvalues (normalized frequencies
f

n

) of (7) [Troitskaya and Gul’elmi , 1967; Bryunelli
and Namgaladze, 1969; Namgaladze and Brunelli, 1970;
Taylor and Walker, 1984; Chiu, 1987]. Of course, more
accurate values are found by solving (5) directly.

Singer et al. [1981] derived a wave equation that can
be used with a general magnetic field model, such as one
of the Tsyganenko models [Tsyganenko, 1989, 1995].
This equation solves for one polarization of the Alfvén
wave (approximately the toroidal or poloidal mode) in-
cluding the eÆect of a general field line shape. The
magnetic field line is not constrained to lie in a merid-
ional plane, and the direction of fluctuation is allowed to
vary along the magnetic field (that is, the fluctuation
may be precisely azimuthal at the magnetic equator,
but in a diÆerent direction oÆ the magnetic equator).
However, the decoupling of the two polarizations of the
Alfvén wave assumed by the derivation is strictly accu-
rate only under special circumstances, such as axisym-
metry of the equilibrium and wave perturbation (for the
toroidal mode). The wave equation is
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where ª

0 is the linear displacement in the direction of
oscillation ª divided by h. The outputs of the mag-
netic field model which go into the solution of (10) are
the distance along the field line s, the magnitude of the
magnetic field B, and the displacement to an adjacent
equilibrium field line h in the direction of oscillation.
(Using h corresponding to an azimuthal separation of
field lines in a dipole field, (10) reduces to (7).) It is
probably best to specify the polarization at the mag-
netic equator, because this is the region of the field line
that has the greatest eÆect on the overall wave proper-
ties. For the toroidal mode, the polarization is deter-
mined by choosing the adjacent field line (needed for
the calculation of h) by stepping a small distance in
the azimuthal direction from the initial field line at the
magnetic equator. (More generally, it would be best to
choose the direction of oscillation to be in the direction

Singer et al. [1981]
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EMFISIS and Toroidal Waves

– EMFISIS L3 1sec Bsm Oct 13 ~ 
Nov 17 (about 95 orbits per SC)

– Data processing following 
Takahashi et al. [2007, 2010]

– Adaptive sampling

– Maximum Entropy Method 
gives well defined peaks

– Criteria [Takahashi et al., 
2007, 2010]: 

1. Pyy(fT) > Pzz(fT)
2. Pyy(fT) > 3 Pxx(fT)
3. ∆fT (FWHM) < 3 mHz
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• ρ(λ) Model:

is some uncertainty as to the exact peak location in Figures 5
and 6. Further details on the calculation of the uncertainty in
the observed frequencies is given in Appendix B; the dashed
lines in Figure 6 will be described in paragraph 34.

3. Method of Calculation

[22] Given the frequencies of the toroidal Alfvén har-
monics, we can solve for the mass density distribution along
the field line. In brief, we assume some functional form for
the mass density distribution along the field line and make a
guess for the coefficients describing the distribution. We
then solve the wave equation of Singer et al. [1981] to get
the theoretical frequencies consistent with the mass density.
We vary the coefficients of the mass density distribution
until the theoretical frequencies match the observed ones.
For any particular solution, we can also find as part of the
solution the linear electric and magnetic field perturbations
of each harmonic.
[23] For the most part, we use the method of Denton et al.

[2001]; the discussion below touches on some important
features of the analysis, stressing mainly the differences
from their approach. The functional form for the mass
density along the field line is either the power law form
in equation (1) or a polynomial expansion for the
base 10 logarithm of the mass density

log10 r ¼ c0 þ c2t2 þ c4t4 þ . . . ð2Þ

in terms of the Alfvén crossing time coordinate t, where

t %
Z

ds

VA
ð3Þ

and the integral is calculated from the magnetic equator
(position of minimum B0) to any position along the field
line. The quantity t is then modified by multiplying by a
linear function of the unadjusted t so that t = ±1 at the two
ionospheric boundaries (the linear term is only a slight
adjustment and does not appear to significantly affect the
results). The coordinate t is the most natural choice for
evaluating the mass density, since in the WKB approxima-
tion, the nodes of an Alfvén wave are evenly spaced with
respect to this coordinate. Because the coordinate t is itself

a function of the field line distribution for r being sought,
we use an iterative scheme so that the values of t used in the
final solution are consistent with the values of r.
[24] For this paper, we limit the solution to even powers

of t (as in equation (2)); that is, the field line distribution is
assumed to be symmetric about the magnetic equator. We
have done computations using odd powers, but the resulting
solutions for r are not very well constrained. Small differ-
ences in the degree of agreement between observed and
theoretical frequencies correspond to large differences in the
field line distribution. Thus for this paper, we will circum-
vent this problem by assuming that the field line distribution
is symmetric.
[25] Denton et al. [2001] used a nonlinear root solver to

adjust the coefficients of the mass density distribution so as
to match the theoretical and observed frequencies. Because
of this, they were limited to use a number of observed
frequencies equal to the number of coefficients describing
the mass density distribution (so that the number of un-
known quantities was equal to number of known quantities).
For the results presented in this paper, we always use as
input to the solution the total number of observed frequen-
cies fobs-n listed in Table 1 (=7). When the number of
coefficients is less than the number of observed frequencies,
we minimize
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where the theoretical and observed frequencies are fth-n and
fobs-n, respectively, and N = 7 is the number of frequencies.
Further details on the method are given in Appendix C.

4. Solutions for Mass Density and Fields
4.1. Field Line Distribution of RR From Frequencies

[26] We now solve for the mass density distribution along
the field line by adjusting the coefficients of the mass density
distribution so that the deviation between the theoretical
and observed frequencies sf defined in equation (4) is
minimized. Based on the peak frequencies for the 29 July
1991 event listed in Table 1, and using the power law density
function in equation (1), we find req,a-peaks = 148 amu/cm3

and apeaks = &5.5, indicating that there is a peak in mass
density at the magnetic equator. (These values are listed in
Table 2. We use the subscripts ‘‘eq’’ or ‘‘sc’’ to indicate the
density at the magnetic equator or spacecraft location, ‘‘obs,’’
‘‘a,’’ or ‘‘poly’’ to indicate the observed quantity or a solution
using the power law density in equation (1) or polynomial
form in equation (2), and ‘‘peaks’’ or ‘‘ensem’’ to indicate a
theoretical solution based on the peak frequencies or using an
ensemble of frequencies as described in the next paragraph.)
[27] In order to estimate the uncertainty in the mass

density distribution due to the uncertainty in the observed
frequencies, we use a Monte Carlo simulation, calculating
the mass density for an ensemble of frequency sets [Denton
et al., 2001]. More specifically, we generate 50 sets of the
seven frequencies such that the standard deviation of the
50 values for each theoretical frequency fth-n is equal to
the uncertainty of the observed frequency listed in Table 1.
Averaging the fits from the ensemble of solutions, we find

Figure 6. Same as Figure 5, but the averages are taken
from 1930 to 2100 UT.
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and 6. Further details on the calculation of the uncertainty in
the observed frequencies is given in Appendix B; the dashed
lines in Figure 6 will be described in paragraph 34.
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[26] We now solve for the mass density distribution along
the field line by adjusting the coefficients of the mass density
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frequencies, we use a Monte Carlo simulation, calculating
the mass density for an ensemble of frequency sets [Denton
et al., 2001]. More specifically, we generate 50 sets of the
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Alfvén crossing time

Denton et al. [2001, 2004]
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Equatorial Mass Density, ρeq
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field, and s is the distance along the field line. This wave equation can be solved in a118

non-dipolar magnetic field geometry to obtain harmonic frequencies, ω. In this paper,119

we assume that the ionosphere is a perfect conductor located at radial distance 1.08 RE120

(∼ 500 km in altitude) [Denton et al., 2004a]. The Tsyganenko 89 (T89) [Tsyganenko,121

1987, 1989] magnetic field model was used because this model only requires the Kp index122

as an input parameter. The dipole magnetic field was also used in parallel for the purpose123

of verification although the result is not shown in this paper.124

In order to derive the equatorial mass distribution from the observed toroidal harmonics,125

we assume the power law mass density model [Denton et al., 2001, 2004a]126

ρ = ρeq

(

LRE

R

)α

, (2)

where L is the farthest radial distance on the field line, R is the distance at any given127

point on the field line and α is the power law index. Given this density model, the free128

parameters, ρeq and α can be found by minimizing the difference between the observed129

toroidal frequencies and the solutions of Eq. (1) in least square sense [Denton et al.,130

2001, 2004a].131

The power law index, α is usually assumed to vary between 0 and 6 depending on the132

location. For L < 6, α = 0− 1, meaning that the mass density along the field line varies133

slowly as a function of latitude, whereas for L > 6, α ∼ 3–4 is suggested [Takahashi134

et al., 2004]. As discussed by Takahashi et al. [2006], Eq. (2) does not represent the mass135

variation along the field line for L > 6 because of the local maximum around the equator.136

Nevertheless, α ≈ 1 represents the mass density near the magnetic equator better than137

α ≈ 4. Following the statistical study by Takahashi et al. [2010], we chose α = 1 and138

calculated ρeq to derive the global equatorial mass density distribution.139
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is some uncertainty as to the exact peak location in Figures 5
and 6. Further details on the calculation of the uncertainty in
the observed frequencies is given in Appendix B; the dashed
lines in Figure 6 will be described in paragraph 34.

3. Method of Calculation

[22] Given the frequencies of the toroidal Alfvén har-
monics, we can solve for the mass density distribution along
the field line. In brief, we assume some functional form for
the mass density distribution along the field line and make a
guess for the coefficients describing the distribution. We
then solve the wave equation of Singer et al. [1981] to get
the theoretical frequencies consistent with the mass density.
We vary the coefficients of the mass density distribution
until the theoretical frequencies match the observed ones.
For any particular solution, we can also find as part of the
solution the linear electric and magnetic field perturbations
of each harmonic.
[23] For the most part, we use the method of Denton et al.

[2001]; the discussion below touches on some important
features of the analysis, stressing mainly the differences
from their approach. The functional form for the mass
density along the field line is either the power law form
in equation (1) or a polynomial expansion for the
base 10 logarithm of the mass density
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(position of minimum B0) to any position along the field
line. The quantity t is then modified by multiplying by a
linear function of the unadjusted t so that t = ±1 at the two
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adjustment and does not appear to significantly affect the
results). The coordinate t is the most natural choice for
evaluating the mass density, since in the WKB approxima-
tion, the nodes of an Alfvén wave are evenly spaced with
respect to this coordinate. Because the coordinate t is itself

a function of the field line distribution for r being sought,
we use an iterative scheme so that the values of t used in the
final solution are consistent with the values of r.
[24] For this paper, we limit the solution to even powers
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assumed to be symmetric about the magnetic equator. We
have done computations using odd powers, but the resulting
solutions for r are not very well constrained. Small differ-
ences in the degree of agreement between observed and
theoretical frequencies correspond to large differences in the
field line distribution. Thus for this paper, we will circum-
vent this problem by assuming that the field line distribution
is symmetric.
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to match the theoretical and observed frequencies. Because
of this, they were limited to use a number of observed
frequencies equal to the number of coefficients describing
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input to the solution the total number of observed frequen-
cies fobs-n listed in Table 1 (=7). When the number of
coefficients is less than the number of observed frequencies,
we minimize
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where the theoretical and observed frequencies are fth-n and
fobs-n, respectively, and N = 7 is the number of frequencies.
Further details on the method are given in Appendix C.

4. Solutions for Mass Density and Fields
4.1. Field Line Distribution of RR From Frequencies

[26] We now solve for the mass density distribution along
the field line by adjusting the coefficients of the mass density
distribution so that the deviation between the theoretical
and observed frequencies sf defined in equation (4) is
minimized. Based on the peak frequencies for the 29 July
1991 event listed in Table 1, and using the power law density
function in equation (1), we find req,a-peaks = 148 amu/cm3

and apeaks = &5.5, indicating that there is a peak in mass
density at the magnetic equator. (These values are listed in
Table 2. We use the subscripts ‘‘eq’’ or ‘‘sc’’ to indicate the
density at the magnetic equator or spacecraft location, ‘‘obs,’’
‘‘a,’’ or ‘‘poly’’ to indicate the observed quantity or a solution
using the power law density in equation (1) or polynomial
form in equation (2), and ‘‘peaks’’ or ‘‘ensem’’ to indicate a
theoretical solution based on the peak frequencies or using an
ensemble of frequencies as described in the next paragraph.)
[27] In order to estimate the uncertainty in the mass

density distribution due to the uncertainty in the observed
frequencies, we use a Monte Carlo simulation, calculating
the mass density for an ensemble of frequency sets [Denton
et al., 2001]. More specifically, we generate 50 sets of the
seven frequencies such that the standard deviation of the
50 values for each theoretical frequency fth-n is equal to
the uncertainty of the observed frequency listed in Table 1.
Averaging the fits from the ensemble of solutions, we find

Figure 6. Same as Figure 5, but the averages are taken
from 1930 to 2100 UT.

A06202 DENTON ET AL.: TOROIDAL ALFVÉN WAVE HARMONICS AND THE MASS DENSITY

6 of 13

A06202

is some uncertainty as to the exact peak location in Figures 5
and 6. Further details on the calculation of the uncertainty in
the observed frequencies is given in Appendix B; the dashed
lines in Figure 6 will be described in paragraph 34.

3. Method of Calculation

[22] Given the frequencies of the toroidal Alfvén har-
monics, we can solve for the mass density distribution along
the field line. In brief, we assume some functional form for
the mass density distribution along the field line and make a
guess for the coefficients describing the distribution. We
then solve the wave equation of Singer et al. [1981] to get
the theoretical frequencies consistent with the mass density.
We vary the coefficients of the mass density distribution
until the theoretical frequencies match the observed ones.
For any particular solution, we can also find as part of the
solution the linear electric and magnetic field perturbations
of each harmonic.
[23] For the most part, we use the method of Denton et al.

[2001]; the discussion below touches on some important
features of the analysis, stressing mainly the differences
from their approach. The functional form for the mass
density along the field line is either the power law form
in equation (1) or a polynomial expansion for the
base 10 logarithm of the mass density

log10 r ¼ c0 þ c2t2 þ c4t4 þ . . . ð2Þ

in terms of the Alfvén crossing time coordinate t, where

t %
Z

ds

VA
ð3Þ

and the integral is calculated from the magnetic equator
(position of minimum B0) to any position along the field
line. The quantity t is then modified by multiplying by a
linear function of the unadjusted t so that t = ±1 at the two
ionospheric boundaries (the linear term is only a slight
adjustment and does not appear to significantly affect the
results). The coordinate t is the most natural choice for
evaluating the mass density, since in the WKB approxima-
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respect to this coordinate. Because the coordinate t is itself

a function of the field line distribution for r being sought,
we use an iterative scheme so that the values of t used in the
final solution are consistent with the values of r.
[24] For this paper, we limit the solution to even powers

of t (as in equation (2)); that is, the field line distribution is
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vent this problem by assuming that the field line distribution
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[25] Denton et al. [2001] used a nonlinear root solver to

adjust the coefficients of the mass density distribution so as
to match the theoretical and observed frequencies. Because
of this, they were limited to use a number of observed
frequencies equal to the number of coefficients describing
the mass density distribution (so that the number of un-
known quantities was equal to number of known quantities).
For the results presented in this paper, we always use as
input to the solution the total number of observed frequen-
cies fobs-n listed in Table 1 (=7). When the number of
coefficients is less than the number of observed frequencies,
we minimize
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density distribution due to the uncertainty in the observed
frequencies, we use a Monte Carlo simulation, calculating
the mass density for an ensemble of frequency sets [Denton
et al., 2001]. More specifically, we generate 50 sets of the
seven frequencies such that the standard deviation of the
50 values for each theoretical frequency fth-n is equal to
the uncertainty of the observed frequency listed in Table 1.
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Figure 6. Same as Figure 5, but the averages are taken
from 1930 to 2100 UT.
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Alfvén crossing time

Denton et al. [2001, 2004]
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Summary

– Explored the potential of the magneto-seismology and the 
potential of RBSP to derive the mass density distribution

– With the electric field from EFW, the detection rate will 
significantly increase

– In-situ electron density information will be very useful for 
interpretation

– Cross-calibration with particle measurement from HOPE 
instrument

– Fundamental quantity and should be understood. RBSP will 
help us
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which will be useful when interpreting observations on the
ground where the fundamental is by far the most dominant
harmonic.
[44] Similarly, Figure 14b confirms the strong correlation

between req_27d and F10.7_27d. Regression analysis of the data
points in this scatterplot results in a correlation coefficient of
0.937 and a linear relationship,

logð!eq 27dÞ ¼ 0:421þ 0:00390F10:7 27d; ð5Þ

where req_27d is given in amu cm−3. We use log(req_27d) on
the left‐hand side instead of req_27d because the former gives
a higher correlation coefficient (0.937) than the latter (0.884).
The high degree of correlation is evidence that the solar UV/
EUV regulates the plasma trough density through its action at
the ionospheric level. We discuss this effect in section 5.
[45] Equation (5) provides a convenient means to estimate

mass density variation at geosynchronous orbit (in the pre-
noon sector and excluding extreme geomagnetic quiescence
and disturbance). Within the 12 years we examined, the value
of F10.7_27d varied between 68 and 255 sfu. The corre-
sponding values of the density from the equation are 4.9 and
26.0 amu cm−3, which mean a variation by a factor of 5.4. If
we use yearly values of F10.7 (yearly median in this study)
denotedF10.7_1y, we find a somewhat smaller range of density
variation: ∼5.0 amu cm−3 for the F10.7_1y minimum of ∼70 sfu
(year 1986) and ∼17.6 amu cm−3 for the F10.7_1y maximum of
∼210 sfu (year 1989), which is a factor of 3.5 variation.

[46] We expect a similar F10.7 dependence to occur on time
scales equal to or shorter than one solar rotation period of
27 days. Large‐amplitude variations of F10.7 with a 27 day
periodicity are quite common so the dependence would be
obvious. To see how the empirical formula (5) performs, we
included its prediction in Figures 8d and 10c, shown by a gray
trace. In Figures 8d and 10c, the prediction matches the
baseline value, but plasmasphere expansion (Figure 8d) and
storm injections (Figure 10c) caused upward density devia-
tion far exceeding the baseline. Therefore, in order to describe
the density variation within the 27 day time span, we need to
incorporate the effects of Kp and Dst. We plan to discuss
parametric dependence of short‐term density variations in a
separate work.

5. Discussion

5.1. Mass Density Control of Magnetospheric
Phenomena
[47] The most important result of the present study is the

fact that over a solar cycle toroidal wave frequency changes
by a factor of ∼2 and the total plasma mass density at geo-
synchronous orbit changes by a factor of ∼4 (the factors
depend on the averaging time constant). This means that
MHD waves propagate twice as fast during the solar mini-
mum than during the solar maximum. This dependence will
impact many magnetospheric phenomena, including wave‐
particle interactions.

Figure 13. Long‐term variations of the solar radio flux, toroidal frequency, and mass density. All param-
eters are medians computed in a nonoverlapping 27 day time window. We imposed the conditions 0600 ≤
MLT < 1200, Kp3d ≥ 1.0 and Dst ≥ −50 nT on the fT3_30m and req_30m samples before computing the
medians. (a) Comparison of F10.7_27d and fT3_27d. (b) Comparison of F10.7_27d and req_27d. Note that log
scale is used for the latter.
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field, and s is the distance along the field line. This wave equation can be solved in a118

non-dipolar magnetic field geometry to obtain harmonic frequencies, ω. In this paper,119

we assume that the ionosphere is a perfect conductor located at radial distance 1.08 RE120

(∼ 500 km in altitude) [Denton et al., 2004a]. The Tsyganenko 89 (T89) [Tsyganenko,121

1987, 1989] magnetic field model was used because this model only requires the Kp index122

as an input parameter. The dipole magnetic field was also used in parallel for the purpose123

of verification although the result is not shown in this paper.124

In order to derive the equatorial mass distribution from the observed toroidal harmonics,125

we assume the power law mass density model [Denton et al., 2001, 2004a]126

ρ = ρeq

(

LRE

R

)α

, (2)

where L is the farthest radial distance on the field line, R is the distance at any given127

point on the field line and α is the power law index. Given this density model, the free128

parameters, ρeq and α can be found by minimizing the difference between the observed129

toroidal frequencies and the solutions of Eq. (1) in least square sense [Denton et al.,130

2001, 2004a].131

The power law index, α is usually assumed to vary between 0 and 6 depending on the132

location. For L < 6, α = 0− 1, meaning that the mass density along the field line varies133

slowly as a function of latitude, whereas for L > 6, α ∼ 3–4 is suggested [Takahashi134

et al., 2004]. As discussed by Takahashi et al. [2006], Eq. (2) does not represent the mass135

variation along the field line for L > 6 because of the local maximum around the equator.136

Nevertheless, α ≈ 1 represents the mass density near the magnetic equator better than137

α ≈ 4. Following the statistical study by Takahashi et al. [2010], we chose α = 1 and138

calculated ρeq to derive the global equatorial mass density distribution.139
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polynomial solutions based on the peak frequency ratios in
Table 2, whereas the thin curves are the log average
solution (middle thin curve) and the log average plus or
minus one standard deviation (upper and lower thin
curves) based on a Monte Carlo simulation using a
distribution of frequency ratios consistent with the stan-
dard deviations in the frequency ratios listed in Table 2
[Denton et al., 2004a].
[28] The range of solutions between the upper and lower

thin solid curves includes real variation in the field line
distribution due to varying frequency ratios and is not
just due to uncertainty in the measurements. Note that at
low LT = 4–5 (Figure 8a), the distribution based on the
peak frequency ratios (thick solid curve) is fairly flat for
MLAT = !10 to 10! and increases farther away from the
magnetic equator. The results of the Monte Carlo simulation
(thin solid curves) show that most of the Monte Carlo
solutions are consistent with a monotonic dependence.
(Note that at large MLAT ^ 30!, our solutions are very

uncertain. This results from the fact that the Alfven fre-
quencies are insensitive to the high-latitude part of the field
line, where the magnetic field and the Alfven speed are
large.) However, at larger LT = 6–8, the distribution based
on the peak frequency ratios (thick solid curve) is locally
peaked at the magnetic equator. (See the work of Takahashi
et al. [2004] for an explanation of how particular values of
the frequency ratio lead to the local peak in r.) The value of
r at MLAT = 0 is about a factor of 2 larger than at
the minimum, which occurs at about 20!. The results of
the Monte Carlo simulation show that most solutions
consistent with the range of frequency ratios in Table 2
are locally peaked (since the range of solutions within
plus or minus one standard deviation at low MLAT is at
higher density than the range of solutions within plus or
minus one standard deviation at intermediate MLAT
between about 10 and 25!). This is especially clear for
LT = 7–8 (Figure 8d).
[29] For the use of modelers, we now make some com-

parisons to solutions using the power law distribution (1).
Figure 9 again shows the inferred field line distributions of
mass density r versus MLAT, but this time, the polynomial
solutions (thick solid curves) are plotted with solutions
based on the power law form (1). All these solutions are
found using the peak frequency ratios in Table 2. Again,
only the relative variation in r is significant. However, the
vertical variations between solutions in each panel is sig-
nificant. The frequency is chosen such that the solution for
a = 0 has r = 1 amu. Figure 9 shows that larger positive
values of a lead to smaller inferred equatorial mass density.
At LT = 4–5 (Figure 9a), r is fairly flat (a = 0) within
MLAT = !10 to 10!. However, considering the entire
MLAT range plotted, the a = 2 solution (thin dashed curve)
does the best job of modeling the r dependence. At LT = 5–6,
a = 1 appears to do the best job of modeling the entire
MLAT range plotted. Note that Takahashi et al. [2004]
suggested a = 0–1 for modeling r at LT < 6. For LT > 6
(Figures 9c and 9d), there is a local peak in r at the magnetic
equator. The power law distribution cannot accurately
model the entire polynomial distribution, since it is not
monotonic. The values of a implied by the frequency ratios
are actually negative, since the low MLAT range has the
largest effect on the frequencies. Over the entire MLAT
range, however, the a = 1 solution probably fits the
polynomial solutions better than the others.
[30] Figure 10 is the same as Figure 9 except that the

power law solutions (thin curves) are found using only the
fundamental frequency. There is very little difference be-
tween the two figures, except that there is less variation in
the solutions near to MLAT = 0!. In Figure 10a (LT = 4–5)
the a = 1 solution is now closer to the polynomial solution
than the a = 2 solution within !20! < MLAT < 20!.
Nevertheless, at small MLAT, the difference between these
solutions is small so that the a = 2 solution is probably still
a better choice considering the entire range of MLAT. For
the other LT ranges, a = 1 leads to solutions that best match
the polynomial form.

3.2. Field Line Distribution From Frequencies of
Takahashi et al. [2004]: Other Factors

[31] In order to investigate what factors other than LT
might be influencing the local peak in r at MLAT = 0, we

Figure 8. Inferred field line distributions of mass density r
versus MLAT for (a) LT = 4–5, (b) LT = 5–6, (c) LT = 6–7,
and (d) LT = 7–8. The bold curves are the polynomial
solutions based on the peak frequencies in Table 2, whereas
the thin curves are the log average solution (middle thin
curve) and the log average plus or minus one standard
deviation (upper and lower thin curves) based on a Monte
Carlo simulation using a distribution of frequencies
consistent with the standard deviations in the frequency
ratios listed in Table 2.
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