A Comparison of the Location of the Mid-latitude Trough and Plasmapause Boundary

Author
Keywords
Abstract
Abstract We have compared the location of the mid-latitude trough observed in two dimensional vertical total electron content (vTEC) maps with four plasmapause boundary models, Radiation Belt Storm Probes observations, and IMAGE EUV observations all mapped to the ionosphere pierce point using the Tsyganenko [1996] magnetic field line model. For this study we examine four events over North America: one just after the 13 October 2012 storm, one during the 20 April 2002 double storm, another during a large substorm on 26 January 2013, and one quiet event on 19 May 2001. We have found that in general, the equatorward edge of the mid-latitude trough is within several degrees in geographic latitude of the mapped model plasmapause boundary location, the plasmapause boundary identified with IMAGE EUV, and the location identified by the Radiation Belt Storm Probes spacecraft. When the mid-latitude trough is mapped to the inner magnetosphere, the observed boundary agrees with the plasmapause boundary models within 2 Earth Radii at nearly all local times in the nightside and the observed mid-latitude boundary is within the uncertainty of the observations at most local times in the nightside. Furthermore, during dynamic solar wind conditions of 20 April 2002, the mid-latitude trough observed in the vTEC maps propagates equatorward as the plasmapause boundary identified with IMAGE EUV moves earthward. Our results indicate that the mid-latitude trough observed within the vTEC maps represents an additional means of identifying the plasmapause boundary location, which could result in improved plasmapause boundary models. This article is protected by copyright. All rights reserved.
Notes
Year of Publication
2021
Journal
Journal of Geophysical Research: Space Physics
Volume
n/a
Number
Number of Pages
e2020JA028213
Date Published
03/2021
URL
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028213
DOI
https://doi.org/10.1029/2020JA028213