On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

Author
Keywords
Abstract
Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0\textendash5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3\textdegree equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0\textdegree; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2\textendash5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.
Year of Publication
2015
Journal
Journal of Geophysical Research: Space Physics
Volume
120
Number of Pages
8707-8722
Date Published
10/2015
URL
http://doi.wiley.com/10.1002/jgra.v120.10http://doi.wiley.com/10.1002/2015JA021676http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002\%2F2015JA021676
DOI
10.1002/jgra.v120.1010.1002/2015JA021676
Download citation