The effects of magnetic fields on photoelectron-mediated spacecraft potential fluctuations

Author
Keywords
Abstract
Previously, we have experimentally studied photoelectron-mediated spacecraft potential fluctuations associated with time-dependent external electric fields. In this paper, we investigate the effects of magnetic fields on such spacecraft potential fluctuations. A magnetic field is created above the UV-illuminated surface of a spacecraft model to alter the escape rate of photoelectrons. The packet of the observed potential oscillations becomes less positive with increasing magnetic field strength because more of the emitted photoelectrons are returned to the surface. As a result, the photoelectric charging time is increased, corresponding to a decrease in the response frequency of the photoemitting surface. The amplitude of the potential oscillations decreases when the response frequency becomes lower than the electric field oscillation frequency. A test particle simulation is validated with the laboratory experiments and applied to estimate the photoelectron escape rate from the Van Allen Probes spacecraft, showing that the photoelectron current is reduced by as much as 30\% when magnetic field strength is 1200 nT. Based on our laboratory results and computer simulations, we discuss the effects of magnetic fields on the spacecraft potential fluctuations observed by the Van Allen Probes.
Year of Publication
2014
Journal
Journal of Geophysical Research: Space Physics
Volume
119
Number of Pages
7319-7326
Date Published
09/2014
URL
http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA019923
DOI
10.1002/jgra.v119.910.1002/2014JA019923
Download citation