An examination of the source of decameter-scale irregularities in the geomagnetically disturbed mid-latitude ionosphere

Author
Keywords
Abstract
We present first results from a study of the plasma instability mechanism responsible for the small-scale (\~10 m) ionospheric density irregularities commonly observed by the Super Dual Auroral Radar Network (SuperDARN) HF radars in the vicinity of Sub Auroral Polarization Streams (SAPS) during periods of geomagnetic disturbance. A focus is placed on the mid-latitude region of the ionosphere over North America where recent expansion of the SuperDARN network allows for extensive direct comparisons with total electron content (TEC) measurements from a dense network of ground-based GPS receivers. The TEC observations indicate that high-speed SAPS channels and the associated small-scale irregularities are typically located within the mid-latitude ionospheric trough. The Millstone Hill Incoherent Scatter Radar (ISR), operating in campaign mode in support of the NASA Van Allen Probes mission, provided measurements of F region ion/electron density, velocity, and temperature suitable for identifying potential mechanisms of plasma instability during a SAPS event that extended over 12 hours of magnetic local time (MLT) on 2 February 2013. Previous work has indicated that the density gradients associated with the poleward wall of the mid-latitude trough can produce small-scale irregularities due to the gradient drift instability during quiet periods by cascade from larger-scale structures. In this study we demonstrate that the gradient drift instability is a viable source for the direct generation of the small-scale irregularities observed by SuperDARN radars in the mid-latitude ionosphere during geomagnetically disturbed conditions.
Year of Publication
2014
Date Published
08/2014
Publisher
IEEE
Conference Location
Beijing, China
URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929853
DOI
10.1109/URSIGASS.2014.6929853