PreMevE: New Predictive Model for Megaelectron-volt Electrons inside Earth\textquoterights Outer Radiation Belt

Author
Keywords
Abstract
This work designs a new model called PreMevE to predict storm-time distributions of relativistic electrons within Earth\textquoterights outer radiation belt. This model takes advantage of the cross-energy, -L-shell, and \textendashpitch-angle coherence associated with wave-electron resonant interactions, ingests observations from belt boundaries\textemdashmainly by NOAA POES in low-Earth-orbits (LEOs), and provides high-fidelity nowcast (multiple-hour prediction) and forecast (> ~1 day) of MeV electron fluxes over L-shells between 2.8-7 through linear prediction filters. PreMevE can not only reliably anticipate incoming enhancements of MeV electrons during storms with at least 1-day forewarning time, but also accurately specify the evolving event-specific electron spatial distributions afterwards. The performance of PreMevE is assessed against long-term in situ data from one Van Allen Probe and a LANL geosynchronous satellite. This new model enhances our preparedness for severe MeV electron events in the future, and further adds new science utility to existing and next-generation LEO space infrastructure.
Year of Publication
2019
Journal
Space Weather
Date Published
02/2019
URL
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002095
DOI
10.1029/2018SW002095