Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Author
Keywords
Abstract
Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations11 obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model12, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth\textquoterights outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.
Year of Publication
2013
Journal
Nature
Volume
504
Number of Pages
411-414
Date Published
12/2013
ISSN Number
0028-0836
URL
http://www.nature.com/doifinder/10.1038/nature12889
DOI
10.1038/nature12889
Download citation