Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe

Author
Keywords
Abstract
Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and WNA. From the analytical Bw models, we found MS wave amplitude Bw has a positive relation with the intensity of geomagnetic activities both inside and outside the plasmapause, while the Bw can reach higher values inside the plasmapause than it does outside the plasmapause as the kp index increases. The Bw distribution on the norF demonstrates that most of the wave energies are concentrated on the lower harmonics part, which results from the excitation mechanism of MS waves. In addition, the Bw distribution on the WNA shows that the waves with larger normal angles have higher values of wave amplitude. Our analytic MS wave model agrees with the observed distribution in 3-D space of L, MLT, and λ well with high value of determine coefficient R2. The extended λ dimension will help us to calculate the more accurate bounced averaged diffusion coefficients during particles transit time.
Notes
Year of Publication
2020
Journal
Journal of Geophysical Research: Space Physics
Volume
125
Number
Number of Pages
e2020JA028527
Date Published
10/2020
URL
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028527
DOI
https://doi.org/10.1029/2020JA028527