• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 1 entries in the Bibliography.

Showing entries from 1 through 1


Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas

Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the resonant beam of electrons. We analyze a single wave case and demonstrate that the instability occurs due to a Krein collision, which manifests as a coupling between a negative and positive energy mode. This analysis revealed that the nonlinear evolution of the spectrally stable fixed-points of the self-consistent Hamiltonian develop a sub-packet structure similar to that of space observations. We then analyze the case of two whistler waves to show that the model reproduces the nonlinear harmonic generation and leads to a hypothesis for the closely spaced frequency hopping observed in laboratory experiments and space data.

Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik;

Published by: Physics of Plasmas      Published on: 03/2017

YEAR: 2017     DOI: 10.1063/1.4977539

Dispersion relations; Electron beams; SingingEigenvalues; Van Allen Probes; Whistler waves