Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements



AuthorCapannolo, L.; Li, W.; Ma, Q.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Reeves, G.;
KeywordsEMIC waves; energetic particle precipitation; pitch angle scattering; Radiation belts; Van Allen Probes; wave particle interactions
AbstractMagnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non-storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes-A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp-01, which detected simultaneous precipitation of >30 keV protons and energetic electrons over an unexpectedly broad energy range (>~30 keV). Multipoint observations together with quasi-linear theory provide direct evidence that the observed electron precipitation at higher energy (>~700 keV) is primarily driven by EMIC waves. However, the newly observed feature of the simultaneous electron precipitation extending down to ~30 keV is not supported by existing theories and raises an interesting question on whether EMIC waves can scatter such low-energy electrons.
Year of Publication2018
JournalGeophysical Research Letters
Volume
Number of Pages
Section
Date Published07/2018
ISBN
URLhttps://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078604
DOI10.1029/2018GL078604