Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Multiple-satellite observation of magnetic dip event during the substorm on 10 October, 2013



AuthorHe, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G.; Xiong, Ying; Xie, Lun; Cao, Yong;
KeywordsEMIC wave; magnetic dip; radiation belt electrons; Ring current ions; Van Allen Probes
AbstractWe present a multiple-satellite observation of the magnetic dip event during the substorm on October 10, 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the EMIC wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.
Year of Publication2017
JournalGeophysical Research Letters
Volume
Number of Pages
Section
Date Published09/2017
ISBN
URLhttp://onlinelibrary.wiley.com/doi/10.1002/2017GL074869/full
DOI10.1002/2017GL074869