• Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations

Authorde Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;
KeywordsPlasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model
AbstractPlasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth\textquoterights radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmaspheric hiss wave intensity. The technique is validated by analyzing the conjunctions between the POES spacecraft and the Van Allen Probes from September 2012 to June 2014. The technique performs well for moderate-to-strong hiss activity (>=30 pT) with sufficiently high electron fluxes. The main source of these limitations is the number of counts of energetic electrons measured by the POES spacecraft capable of resonating with hiss waves. For moderate-to-strong hiss events, the results show that the wave amplitudes from the EMFISIS instruments onboard the Van Allen Probes are well reproduced by the POES technique, which provides more consistent estimates than the parameterized statistical hiss wave model based on CRRES data.
Year of Publication2015
JournalJournal of Geophysical Research: Space Physics
Number of Pages
Date Published10/2015