Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Broadband low frequency electromagnetic waves in the inner magnetosphere



AuthorChaston, C.; Bonnell, J.; Kletzing, C.; Hospodarsky, G.; Wygant, J.; Smith, C.;
KeywordsAlfven waves; Geomagnetic storms; ring current; turbulence; Van Allen Probes
AbstractA prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magnetic spectral energy density with fsc obeys inline image over several decades with a spectral break-point at fb ≈1 Hz. The values for α are log normally distributed with α = 1.9 \textpm 0.6 for fsc < fb andα = 2.9 \textpm 0.6 for fsc > fb. A is a function of geomagnetic activity with the largest values observed over intervals of decreasing Dst index during the main phase of geomagnetic storms. At these times these waves are nearly always present in the night-side inner magnetosphere and are commonly observed from L = 3 outward. The observed variation of the electric to magnetic field amplitude with fsc is well described by a dispersive Alfv\ en wave model under the assumption that fsc is primarily a consequence of the Doppler shift of plasma frame structures moving over the spacecraft. The robust anti-correlation between the time rate change of the Dst index and wave spectral energy density coupled with the ability of dispersive Alfv\ en waves to drive transverse ion acceleration suggests that these waves may boost ion energy density in the inner magnetosphere and intensify the ring current during storm times.
Year of Publication2015
JournalJournal of Geophysical Research: Space Physics
Volume
Number of Pages
Section
Date Published09/2015
ISBN
URLhttp://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021690/abstract
DOI10.1002/2015JA021690