Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Electric field structures and waves at plasma boundaries in the inner magnetosphere



AuthorMalaspina, David; Wygant, John; Ergun, Robert; Reeves, Geoff; Skoug, Ruth; Larsen, Brian;
Keywordsinjection; inner magnetosphere; nonlinear electric field structures; plasma boundary; plasma sheet; Van Allen Probes
AbstractRecent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field line resonances, nonlinear whistler mode waves, and several types of double layer. However, it is unclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, are consistent with the scenario that the sources of the free energy for the structures and waves of interest are localized near and comove with these boundaries. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed in part by the spatial extent and dynamics of macroscopic plasma boundaries in that region.
Year of Publication2015
JournalJournal of Geophysical Research: Space Physics
Volume
Number of Pages
Section
Date Published05/2015
ISBN
URLhttp://doi.wiley.com/10.1002/2015JA021137
DOI10.1002/2015JA021137