Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1 entries in the Bibliography.


Showing entries from 1 through 1


2021

The First Observation of N+ Electromagnetic Ion Cyclotron Waves

Abstract Observations from past space missions report on the significant abundance of N+, in addition to those of O+, outflowing from the terrestrial ionosphere and populating the near-Earth region. However, instruments on board current space missions lack the mass resolution to distinguish between the two, and often the role of N+ in regulating the magnetosphere dynamics, is lumped together with that of O+ ions. For instance, our understanding regarding the role of electromagnetic ion cyclotron (EMIC) waves in controlling the loss and acceleration of radiation belt electrons and ring current ions has been based on the contribution of He+ and O+ ions only. We report the first observations by Van Allen Probes of linearly polarized N+ EMIC waves, which confirm the presence of N+ in the terrestrial magnetosphere, and open up new avenues to particle energization, loss, and transport mechanisms, based on the altered magnetospheric plasma composition.

Bashir, Fraz; Ilie, Raluca;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028716

electromagnetic ion cyclotron waves; heavy ions; Van Allen Probes; N+ EMIC Wave; Wave-particle interaction; inner magnetosphere



  1