Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


1966

Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field

The quasi-linear velocity space diffusion is considered for waves of any oscillation branch propagating at an arbitrary angle to a uniform magnetic field in a spatially uniform plasma. The space-averaged distribution function is assumed to change slowly compared to a gyroperiod and characteristic times of the wave motion. Nonlinear mode coupling is neglected. An H-like theorem shows that both resonant and nonresonant quasi-linear diffusion force the particle distributions towards marginal stablity. Creation of the marginally stable state in the presence of a sufficiently broad wave spectrum in general involves diffusing particles to infinite energies, and so the marginally stable plateau is not accessible physically, except in special cases. Resonant particles with velocities much larger than typical phase velocities in the excited spectrum are scattered primarily in pitch angle about the magnetic field. Only particles with velocities the order of the wave phase velocities or less are scattered in energy at a rate comparable with their pitch angle scattering rate.

Kennel, C.;

Published by: Physics of Fluids      Published on: 12/1966

YEAR: 1966     DOI: 10.1063/1.1761629

Local Loss due to VLF/ELF/EMIC Waves

Limit on Stably Trapped Particle Fluxes

Whistler mode noise leads to electron pitch angle diffusion. Similarly, ion cyclotron noise couples to ions. This diffusion results in particle precipitation into the ionosphere and creates a pitch angle distributon of trapped particles that is unstable to further wave growth. Since excessive wave growth leads to rapid diffusion and particle loss, the requirement that the growth rate be limited to the rate at which wave energy is depleted by wave propagation permits an estimate of an upper limit to the trapped equatorial particle flux. Electron fluxes >40 kev and proton fluxes >120 kev observed on Explorers 14 and 12, respectively, obey this limit with occasional exceptions. Beyond L = 4, the fluxes are just below their limit, indicating that an unspecified acceleration source, sufficient to keep the trapped particles near their precipitation limit, exists. Limiting proton and electron fluxes are roughly equal, suggesting a partial explanation for the existence of larger densities of high-energy protons than of electrons. Observed electron pitch angle profiles correspond to a diffusion coefficient in agreement with observed lifetimes. The required equatorial whistler mode wide band noise intensity, 10-2γ, is not obviously inconsistent with observations and is consistent with the lifetime and with limiting trapped particle intensity.

Kennel, C.; Petschek, H.;

Published by: Journal Geophysical Research      Published on: 01/1966

YEAR: 1966     DOI: 10.1029/JZ071i001p00001

Local Loss due to VLF/ELF/EMIC Waves



  1