• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 3 entries in the Bibliography.

Showing entries from 1 through 3


Simultaneous observations and combined effects of electromagnetic ion cyclotron waves and magnetosonic waves

Abstract Magnetosonic (MS) waves and Electromagnetic ion cyclotron (EMIC) waves are important plasma waves in the magnetosphere. Using the Van Allen Probes observations from 2012 to 2017, we constructed the global distribution of simultaneous occurrence of MS and EMIC waves. We found a total of 214 events, and the waves distribute from the noon sector to the duskside. Furthermore, we quantitatively analyze the combined effects of both waves on protons and electrons by calculating of particle diffusion coefficients and 2-D Fokker-Planck diffusion simulations. The simulation results show the combined effects of MS and EMIC waves. High-frequency EMIC waves and intense MS waves at low proton harmonics are essential for the enhanced proton acceleration at several hundred eV and enhanced electron loss at several MeV. Our results provide new sights into understanding the distribution of MS and EMIC waves and evaluating their combined effects on the evolution of energetic particles.

Teng, S.; Ma, Q.; Tao, X.;

Published by: Geophysical Research Letters      Published on: 08/2021

YEAR: 2021     DOI:

EMIC waves; MS waves; Wave-particle interaction; diffusion coefficients; Van Allen Probes

Effects of the plasmapause on the radial propagation of fast magnetosonic waves: An Analytical Approach

Abstract In this paper, analytical approximation is used to solve the wave equations near the plasmapause boundary layer in order to examine the validity of ray tracing approach for fast magnetosonic (MS) wave propagations, and then analytical solutions for electromagnetic fields of MS waves through the plasmapause boundary layer are provided for the first time. Both theoretical calculations from the analytical expressions and observations of Van Allen Probes have indicated that electric fields of MS waves decrease rapidly but magnetic fields increase rapidly when propagating across the plasmapause boundary layer from the outside. Considering effects of width of the plasmapause and wave frequency, parameter analysis has shown that when the width of the plasmapause boundary layer is narrow in comparison with the wavelength of MS waves, a significant part of waves will be reflected. In these circumstances, the WKB approximation and then ray tracing method might become invalid, and analytical approach provided in this paper could be utilized to solve the wave equation.

Yu, Xiongdong; Yuan, Zhigang; Ouyang, Zhihai; Yao, Fei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI:

MS waves; Radial propagation; Analytical approach; WKB approximation; Van Allen Probes


Simultaneous trapping of EMIC and MS waves by background plasmas

Electromagnetic ion cyclotron waves and fast magnetosonic waves are found to be simultaneously modulated by background plasma density: both kinds of waves were observed in high plasma density regions but vanished in low density regions. Theoretical analysis based on Snell\textquoterights law and linear growth theory have been utilized to investigate the physical mechanisms driving such modulation. It is suggested that the modulation of fast magnetosonic waves might be due to trapping by plasma density structures, which results from a conservation of the parameter Q during their propagation. Here Q = nrsinψ, with n the refractive index, r the radial distance, and ψ the wave azimuthal angle. As for electromagnetic ion cyclotron waves, the modulation might be owed to the ion composition difference between different plasma density regions. Our results indicate the alternative mechanism for simultaneous appearance of electromagnetic ion cyclotron waves and fast magnetosonic waves (rather than wave excitations of both two wave emissions), which might take combined effects on the evolution of radiation belt electrons.

Yuan, Zhigang; Yu, Xiongdong; Ouyang, Zhihai; Yao, Fei; Huang, Shiyong; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026149

EMIC waves; MS waves; Ring current ions; Van Allen Probes; Wave trapping