• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Low Frequency ULF Waves in the Earth’s Inner Magnetosphere: Statistics During Coronal Mass Ejections and Seeding of EMIC Waves

Abstract Here we perform a statistical analysis of low frequency ultra-low-frequency (ULF) waves (mHz-Hz) in the Earth’s inner magnetosphere excluding electromagnetic ion cyclotron (EMIC) waves concurrently observed. We use the magnetic field data from the two Van Allen Probes during their first magnetic local time (MLT) revolution that cover the periods of coronal mass ejections. The major results of our analysis are as follows. (1) Spectra of both the transverse and compressional ULF waves are well approximated by the power-laws in the mHz-Hz frequency range. (2) There are two sources of the low frequency ULF waves: an internal magnetospheric source and an external source outside of the magnetosphere. (3) The average transverse power in the 6-24 hr MLT sector dominates that in the 0-6 hr sector, whereas the compressional power in the 12-24 hr sector dominates that in the 0-12 hr sector. (4) The average powers of transverse and compressional ULF waves in the plasmasphere dominate the average powers in the high L shell region of , and there is a deep power minimum in the intermediary region of . (5) The compressional ULF wave power has a maximum in the near equatorial region, whereas the transverse power has a minimum there. (6) A wave energy cascade from low frequency ULF waves into the higher frequency range of EMIC waves (Hz) supplies the nonthermal seed fluctuations from which EMIC waves can then grow due to instabilities of the energetic magnetospheric ions. This article is protected by copyright. All rights reserved.

Gamayunov, Konstantin; Engebretson, Mark;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2021

YEAR: 2021     DOI:

coronal mass ejection; low frequency ULF waves; Earth s inner magnetosphere; statistics of ULF waves; turbulent energy cascade; seeding of EMIC waves; Van Allen Probes


Pileup accident hypothesis of magnetic storm on 17 March 2015

We propose a \textquotedblleftpileup accident\textquotedblright hypothesis, based on the solar wind data analysis and magnetohydrodynamics modeling, to explain unexpectedly geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015: First, a fast coronal mass ejection with strong southward magnetic fields both in the sheath and in the ejecta was followed by a high-speed stream from a nearby coronal hole. This combination resulted in less adiabatic expansion than usual to keep the high speed, strong magnetic field, and high density within the coronal mass ejection. Second, preceding slow and high-density solar wind was piled up ahead of the coronal mass ejection just before the arrival at the Earth to further enhance its magnetic field and density. Finally, the enhanced solar wind speed, magnetic field, and density worked all together to drive the major magnetic storm.

Kataoka, Ryuho; Shiota, Daikou; Kilpua, Emilia; Keika, Kunihiro;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064816

coronal hole; coronal mass ejection; corotating interaction region; magnetic storm