Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator



AuthorTakahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;
KeywordsVan Allen Probes
AbstractThe Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each toroidal wave packet is \~20 min, which is much longer than that of the corresponding Pi2 wave packet. The toroidal waves cannot be the source of high-latitude Pi2 waves because they were not detected on the ground near the magnetic field footprint of Arase. Overall, the toroidal wave event lasted more than 2 h and allowed us to use the wave frequency to estimate the plasma mass density at L = 6.1\textendash8.3. The mass density (in amu cm-3) is higher than the electron density (in cm-3) by a factor of \~6, which implies that 17\textendash33\% of the ions were O+.
Year of Publication2018
JournalGeophysical Research Letters
Volume
Number of Pages
Section
Date Published07/2018
ISBN
URLhttps://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078731
DOI10.1029/2018GL078731