Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2021

Superposed Epoch Analysis of Dispersionless Particle Injections Inside Geosynchronous Orbit

AbstractDispersionless injections, involving sudden, simultaneous flux enhancements of energetic particles over some broad range of energy, are a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport at the leading edge of injections. We have statistically analyzed data from Van Allen Probes (also known as RBSP ) to reveal where the proton (H+) and electron (e–) dispersionless injections occur preferentially inside geosynchronous orbit and how they develop depending on local magnetic field changes. By surveying measurements of RBSP during four tail seasons in 2012–2019, we have identified 171 dispersionless injection events. Most of the events, which are accompanied by local magnetic dipolarizations, occur in the dusk-to-midnight sector, regardless of particle species. Out of the selected 171 events, 75 events exhibit dispersionless injections of both H+ and e–, which occur within 2 minutes of each other. With only three exceptions, the both-species injection events are further divided into two main subgroups: One is the H+ preceding e– events with a time offset of tens of seconds between H+ and e–, and the other the concurrent H+ and e– events without any time offset. Our superposed epoch results raise the intriguing possibility that the presence or absence of a pronounced negative dip in the local magnetic field ahead of the concurrent sharp dipolarization determines which of the two subgroups will occur. The difference between the two subgroups may be explained in terms of the dawn-dusk asymmetry of localized diamagnetic perturbations ahead of a deeply-penetrating dipolarization front.This article is protected by copyright. All rights reserved.

Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A; Lanzerotti, L.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029546

Dispersionless injections; substorms; inner magnetosphere; Van Allen Probes

2020

Dynamic Properties of Particle Injections Inside Geosynchronous Orbit: A Multisatellite Case Study

Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called “RBSP”) at ~5.8 RE, and a THEMIS satellite at ~5.3 RE, observed substorm-related particle injections and local dipolarizations near the central meridian (~22 MLT) of a wedge-like current system. The large-scale evolution of the electron and ion (H, He, and O) injections was almost identical at the two RBSP spacecraft with ~0.5 RE apart. However, the initial short-timescale particle injections exhibited a striking difference between RBSP-A and -B: RBSP-B observed an energy dispersionless injection which occurred concurrently with a transient, strong dipolarization front (DF) with a peak-to-peak amplitude of ~25 nT over ~25 s; RBSP-A measured a dispersed/weaker injection with no corresponding DF. The spatiotemporally localized DF was accompanied by an impulsive, westward electric field (~20 mV m−1). The fast, impulsive E × B drift caused the radial transport of the electron and ion injection regions from GEO to ~5.8 RE. The penetrating DF fields significantly altered the rapid energy- and pitch angle-dependent flux changes of the electrons and the H and He ions inside GEO. Such flux distributions could reflect the transient DF-related particle acceleration and/or transport processes occurring inside GEO. In contrast, O ions were little affected by the DF fields.

Motoba, T.; Ohtani, S.; Claudepierre, S.; Reeves, G.; Ukhorskiy, A; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028215

deep particle injections; dipolarizations; substorms; localized DF; Van Allen Probes

2018

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each toroidal wave packet is \~20 min, which is much longer than that of the corresponding Pi2 wave packet. The toroidal waves cannot be the source of high-latitude Pi2 waves because they were not detected on the ground near the magnetic field footprint of Arase. Overall, the toroidal wave event lasted more than 2 h and allowed us to use the wave frequency to estimate the plasma mass density at L = 6.1\textendash8.3. The mass density (in amu cm-3) is higher than the electron density (in cm-3) by a factor of \~6, which implies that 17\textendash33\% of the ions were O+.

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit

This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1\textendash1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30\textdegree from the 2012\textendash2016 tail seasons\textquoteright observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is accompanied by a precursory transient decrease in the northward magnetic field component, transient impulsive enhancement in the westward electric field component, and decrease (increase) in the proton density (temperature). The coincident ion species experience an energy-dependent flux change, consisting of enhancement (depression) at energies above (below) ~50 keV. These properties morphologically resemble those around dipolarization fronts (or fast flows) in the near-Earth tail. A distinction among the ion species is the average energy of the flux ratio peak, being at 200\textendash400 keV (100\textendash200 keV) for He (H and O) ions. The flux ratio peaks at different energies likely reflect the different charge states of injected ionospheric- and/or solar wind-origin ion species. The ion spectra become harder for sharp dipolarizations, suggesting the importance of accompanying electric field in transporting and/or energizing the ions efficiently. Interestingly, the average flux ratio peak does not differ significantly among the ion species for ~2 min after onset, which implies that mass-dependent acceleration process is less important in the initial stage of dipolarization.

Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A.; Mitchell, D.; Takahashi, K.; Lanzerotti, L.; Kletzing, C.; Spence, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018JA025557

deep inside geosynchronous orbit; dipolarizations; Ion injections; ion species; Van Allen Probes

Spatial Development of the Dipolarization Region in the Inner Magnetosphere

The present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk-to-midnight sector than in the midnight-to-dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. > 0.8) within 1 hr in MLT and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk-to-midnight sector. The westward expansion velocity is estimated at 0.4 hr (in MLT) per minute, or 60 km/s, which is consistent with the previously reported result for geosynchronous dipolarization. The earthward expansion is apparently less systematic than the westward expansion. Its velocity is estimated at 50 km/s (0.5 RE/min), comparable to the westward expansion velocity, but it is suggested that the earthward expansion slows down as the dipolarization region approaches Earth, and it eventually stops. This idea is consistent with the earthward reduction of the occurrence probability of dipolarization events. Whereas this earthward expansion is difficult to explain with the conventional wedge current system, it may be understood in terms of a current system with two wedges, one with the R1 polarity outside and the other with the R2 polarity closer to Earth. For such a current system the region of dipolarization is confined in radial distance between the two wedge currents, and it is considered to expand earthward as the R2-sense wedge moves earthward along with injected plasma.

Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Singer, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018JA025443

Dipolarization; injection; inner magnetosphere; R1 and R2 currents; substorm current wedge; substorms; Van Allen Probes

2015

On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0\textendash5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3\textdegree equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0\textdegree; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2\textendash5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

Motoba, T.; Ohtani, S.; Anderson, B.; Korth, H.; Mitchell, D.; Lanzerotti, L.; Shiokawa, K.; Connors, M.; Kletzing, C.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/jgra.v120.1010.1002/2015JA021676

FACs; growth phase/onset arc; M-I coupling; Van Allen Probes

Giant pulsations on the afternoonside: Geostationary satellite and ground observations

Giant pulsations (Pgs) are a special class of oscillations recognized in ground magnetometer records as exhibiting highly regular sinusoidal waveforms in the east-west component with periods around 100s. Previous statistical studies showed that Pgs occur almost exclusively on the morningside with peak occurrence in the postmidnight sector. In this paper, we present observations of Pgs extending to the afternoonside, using data from the GOES13 and 15 geostationary satellites and multiple ground magnetometers located in North America. For a long-lasting event on 29 February 2012, which spanned \~08\textendash18h magnetic local time, we show that basic Pg properties did not change with the local time, although the period of the pulsations was longer at later local time due to increasing mass loading. There is evidence that the Pgs resulted from fundamental poloidal mode standing Alfv\ en waves, both on the morning and afternoonsides. Oscillations of energetic particles associated with the field oscillations exhibited an energy-dependent phase, which has previously been reported and explained by drift resonance. A statistical analysis of the ground magnetic field data (L = 3.8\textendash7.4) covering 2008\textendash2013 confirms that afternoon Pgs are not unusual. We identified a total of 105 Pg events (about 70\% (30\%) of the events occurred during non-storm (late storm recovery) periods), 31 of which occurred on the afternoonside. The afternoon Pgs occur under solar wind and geomagnetic conditions that are similar to the morning Pgs, but the afternoon Pgs tend to have short durations and occur frequently in winter instead of around spring and fall equinoxes that are favored by the morning Pgs.

Motoba, Tetsuo; Takahashi, Kazue; Rodriguez, Juan; Russell, Christopher;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021592

giant pulsations; ground-space conjunction; wave-particle interactions

Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager

We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3\textendash4 km s-1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ -103. During the event the spacecraft \textendash being on tailward stretched field lines ~0.5 RE outside the plasmapause that mapped into the ionosphere conjugate to the auroral undulations \textendash encountered intense poloidal ULF oscillations in the magnetic and electric fields. We identify the field oscillations to be the second harmonic mode along the magnetic field line through comparisons of the observed wave properties with theoretical predictions. The field oscillations were accompanied by oscillations in proton and electron fluxes. Most interestingly, both field and particle oscillations at the spacecraft had one-to-one association with the auroral luminosity oscillations around its footprint. Our findings strongly suggest that this auroral undulation event is closely linked to the generation of second harmonic poloidal waves

Motoba, T.; Takahashi, K.; Ukhorskiy, A.; Gkioulidou, M.; Mitchell, D.; Lanzerotti, L.; Korotova, G.; Donovan, E.; Wygant, J.; Kletzing, C.; Kurth, W.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020863

Van Allen Probes



  1