Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Dependence of the amplitude of magnetosonic waves on the solar wind and AE index using Van Allen Probes



AuthorKim, Kyung-Chan; Shprits, Yuri;
Keywordsmagnetosonic equatorial noise; solar wind dependence; Van Allen Probes
AbstractWe present the dependence of the magnetosonic wave amplitudes both outside and inside the plasmapause on the solar wind and AE index using Van Allen Probe-A spacecraft during the time period of 1 October 2012 to 31 December 2015, based on a correlation and regression analysis. Solar wind parameters considered are the southward interplanetary magnetic field (IMF BS), solar wind number density (NSW), and bulk speed (VSW). We find that the wave amplitudes outside (inside) the plasmapause are well correlated with the preceding AE, IMF BS, and NSW with time delays, each corresponding to 2\textendash3 h (3\textendash4 h), 4\textendash5 h (3\textendash4 h), and 2\textendash3 h (8\textendash9 h), while the correlation with VSW is ambiguous both inside and outside the plasmapause. As measured by the correlation coefficient, the IMF BS is the most influential solar wind parameter that affects the dayside wave amplitudes both outside and inside the plasmapause, while NSW contributes to enhancing the duskside waves outside the plasmapause. The AE effect on wave amplitudes is comparable to that of IMF BS. More interestingly, regression with time histories of the solar wind parameters and the AE index preceding the wave measurements outside the plasmapause shows significant dependence on the IMF BS, NSW, and AE: the region of peak coefficients is changed with time delay for IMF BS and AE, while isolated peaks around duskside remain gradually decrease with time for NSW. In addition, the regression with magnetosonic waves inside the plasmapause shows high coefficients around prenoon sector with preceding IMF BS and VSW.
Year of Publication2017
JournalJournal of Geophysical Research: Space Physics
Volume
Number of Pages
Section
Date Published05/2017
ISBN
URLhttp://onlinelibrary.wiley.com/doi/10.1002/2017JA024094/full
DOI10.1002/2017JA024094