Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 59 entries in the Bibliography.


Showing entries from 1 through 50


2021

Reconstructing the dynamics of the outer electron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3D code

Abstract Reconstruction and prediction of the state of the near-Earth space environment is important for anomaly analysis, development of empirical models and understanding of physical processes. Accurate reanalysis or predictions that account for uncertainties in the associated model and the observations, can be obtained by means of data assimilation. The ensemble Kalman filter (EnKF) is one of the most promising filtering tools for non-linear and high dimensional systems in the context of terrestrial weather prediction. In this study, we adapt traditional ensemble based filtering methods to perform data assimilation in the radiation belts. By performing a fraternal twin experiment, we assess the convergence of the EnKF to the standard Kalman filter (KF). Furthermore, with the split-operator technique, we develop two new three-dimensional EnKF approaches for electron phase space density that account for radial and local processes, and allow for reconstruction of the full 3D radiation belt space. The capabilities and properties of the proposed filter approximations are verified using Van Allen Probe and GOES data. Additionally, we validate the two 3D split-operator Ensemble Kalman filters against the 3D split-operator KF. We show how the use of the split-operator technique allows us to include more physical processes in our simulations and offers computationally efficient data assimilation tools that deliver accurate approximations to the optimal solution of the KF and are suitable for real-time forecasting. Future applications of the EnKF to direct assimilation of fluxes and non-linear estimation of electron lifetimes are discussed.

Tibocha, A.; de Wiljes, J.; Shprits, Y; Aseev, N.;

Published by: Space Weather      Published on: 08/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002672

Kalman Filter; Ensemble Kalman filter; forecasting; Van Allen Probes

A Comparison of Radial Diffusion Coefficients in 1-D and 3-D Long-Term Radiation Belt Simulations

AbstractRadial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the dataset used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), Brautigam et al. (2005), Ozeke et al. (2014), Ali et al. (2015); Ali et al. (2016); Ali (2016), and Liu et al. (2016) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB) code, and compare the results to Van Allen Probes observations. First, 1-D radial diffusion simulations are performed, isolating the contribution of solely radial diffusion. We then take into account effects of local acceleration and loss showing additional 3-D simulations, including diffusion across pitch-angle, energy, and mixed diffusion. For the L* range studied, the difference between simulations with Brautigam and Albert (2000), Ozeke et al. (2014), and Liu et al. (2016) parameterizations is shown to be small, with Brautigam and Albert (2000) offering the smallest averaged (across multiple energies) absolute normalized difference with observations. Using the Ali et al. (2016) parameterization tended to result in a lower flux than both the observations and the VERB simulations using the other coefficients. We find that the 3-D simulations are less sensitive to the radial diffusion coefficient chosen than the 1-D simulations, suggesting that for 3-D radiation belt models, a similar result is likely to be achieved, regardless of whether Brautigam and Albert (2000), Ozeke et al. (2014), and Liu et al. (2016) parameterizations are used.This article is protected by copyright. All rights reserved.

Drozdov, A; Allison, H.; Shprits, Y; Elkington, S.R.; Aseev, N.A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028707

Radiation belts; radial diffusion; VERB code; Van Allen Probes

Preliminary Statistical Comparisons of Spin-Averaged Electron Data from Arase and Van Allen Probes Instruments

Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue in-situ radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spin-averaged flux measurements from the MEPe, HEP-L, HEP-H, and XEP-SSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van Allen Probes measurements show a close agreement over a wide range of energies, observing a similar general evolution of electron flux, as well as average, peak, and minimum values. Measurements from the two missions agree especially well in the 3.6 ≤ L* ≤ 4.4 range where Arase samples similar magnetic latitudes to Van Allen Probes. Arase tends to record higher flux for energies < 670 keV with longer decay times after flux enhancements, particularly for L* < 3.6 . Conversely, for energies > 1.4 MeV, Arase flux measurements are generally lower than those of Van Allen Probes, especially for L* > 4.4 . The correlation coefficient values show that the > 1.4 MeV flux from both missions are well correlated, indicating a similar general evolution, although flux magnitudes differ. We perform a preliminary intercalibration between the two missions using the mean ratio of the fluxes as an energy- and L*- dependent intercalibration factor. The intercalibration factor improves agreement between the fluxes in the 0.58-1 MeV range. This article is protected by copyright. All rights reserved.

Szabó-Roberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028929

Arase/ERG; RBSP; intercalibration; Van Allen Probes

A Comparison of the Location of the Mid-latitude Trough and Plasmapause Boundary

Abstract We have compared the location of the mid-latitude trough observed in two dimensional vertical total electron content (vTEC) maps with four plasmapause boundary models, Radiation Belt Storm Probes observations, and IMAGE EUV observations all mapped to the ionosphere pierce point using the Tsyganenko [1996] magnetic field line model. For this study we examine four events over North America: one just after the 13 October 2012 storm, one during the 20 April 2002 double storm, another during a large substorm on 26 January 2013, and one quiet event on 19 May 2001. We have found that in general, the equatorward edge of the mid-latitude trough is within several degrees in geographic latitude of the mapped model plasmapause boundary location, the plasmapause boundary identified with IMAGE EUV, and the location identified by the Radiation Belt Storm Probes spacecraft. When the mid-latitude trough is mapped to the inner magnetosphere, the observed boundary agrees with the plasmapause boundary models within 2 Earth Radii at nearly all local times in the nightside and the observed mid-latitude boundary is within the uncertainty of the observations at most local times in the nightside. Furthermore, during dynamic solar wind conditions of 20 April 2002, the mid-latitude trough observed in the vTEC maps propagates equatorward as the plasmapause boundary identified with IMAGE EUV moves earthward. Our results indicate that the mid-latitude trough observed within the vTEC maps represents an additional means of identifying the plasmapause boundary location, which could result in improved plasmapause boundary models. This article is protected by copyright. All rights reserved.

Weygand, J.M.; Zhelavskaya, I.; Shprits, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028213

mid-latitude trough; plasmapause boundary; vTECs; plasmapause models; Van Allen Probes

Reconstruction of the Radiation Belts for Solar Cycles 17 – 24 (1933 – 2017)

AbstractWe present a reconstruction of the dynamics of the radiation belts from Solar Cycles 17 – 24 which allows us to study how radiation belt activity has varied between the different solar cycles. The radiation belt simulations are produced using the Versatile Electron Radiation Belt (VERB)-3D code. The VERB-3D code simulations incorporate radial, energy, and pitch angle diffusion to reproduce the radiation belts. Our simulations use the historical measurements of Kp (available since Solar Cycle 17, i.e., 1933) to model the evolution radiation belt dynamics between L* = 1 – 6.6. A nonlinear auto regressive network with exogenous inputs (NARX) neural network was trained off GOES 15 measurements (Jan. 2011 – March 2014) and used to supply the upper boundary condition (L* = 6.6) over the course of Solar Cycles 17 – 24 (i.e., 1933 – 2017). Comparison of the model with long term observations of the Van Allen Probes and CRRES demonstrates that our model, driven by the NARX boundary, can reconstruct the general evolution of the radiation belt fluxes. Solar Cycle 24 (Jan 2008 – 2017) has been the least active of the considered solar cycles which resulted in unusually low electron fluxes. Our results show that Solar Cycle 24 should not be used as a representative solar cycle for developing long term environment models. The developed reconstruction of fluxes can be used to develop or improve empirical models of the radiation belts.This article is protected by copyright. All rights reserved.

Saikin, A.; Shprits, Y; Drozdov, A; Landis, D.; Zhelavskaya, I.; Cervantes, S.;

Published by: Space Weather      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002524

Radiation belts; numerical modeling; Particle acceleration; Magnetosphere: inner; forecasting; Van Allen Probes

A combined neural network- and physics-based approach for modeling plasmasphere dynamics

AbstractIn recent years, feedforward neural networks (NNs) have been successfully applied to reconstruct global plasmasphere dynamics in the equatorial plane. These neural network-based models capture the large-scale dynamics of the plasmasphere, such as plume formation and erosion of the plasmasphere on the nightside. However, their performance depends strongly on the availability of training data. When the data coverage is limited or non-existent, as occurs during geomagnetic storms, the performance of NNs significantly decreases, as networks inherently cannot learn from the limited number of examples. This limitation can be overcome by employing physics-based modeling during strong geomagnetic storms. Physics-based models show a stable performance during periods of disturbed geomagnetic activity, if they are correctly initialized and configured. In this study, we illustrate how to combine the neural network- and physics-based models of the plasmasphere in an optimal way by using data assimilation. The proposed approach utilizes advantages of both neural network- and physics-based modeling and produces global plasma density reconstructions for both quiet and disturbed geomagnetic activity, including extreme geomagnetic storms. We validate the models quantitatively by comparing their output to the in-situ density measurements from RBSP-A for an 18-month out-of-sample period from 30 June 2016 to 01 January 2018, and computing performance metrics. To validate the global density reconstructions qualitatively, we compare them to the IMAGE EUV images of the He+ particle distribution in the Earth s plasmasphere for a number of events in the past, including the Halloween storm in 2003.This article is protected by copyright. All rights reserved.

Zhelavskaya, I.; Aseev, N.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028077

plasmasphere; plasma density; neural networks; data assimilation; Kalman Filter; Machine learning; Van Allen Probes

2020

Quantifying the Effects of EMIC Wave Scattering and Magnetopause Shadowing in the Outer Electron Radiation Belt by Means of Data Assimilation

In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant μ ranging from 300 to 3,000 MeV G−1. We inspect the innovation vector and perform a statistical analysis to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. Our results are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. We show that EMIC wave scattering tends to dominate loss at lower L shells, and it may amount to between 10\%/hr and 30\%/hr of the maximum value of phase space density (PSD) over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50\%/hr to 70\%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt.

Cervantes, S.; Shprits, Y; Aseev, N.; Allison, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028208

data assimilation; EMIC waves; magnetopause shadowing; innovation vector; Kalman Filter; radiation belt losses; Van Allen Probes

The Role of Hiss, Chorus, and EMIC Waves in the Modeling of the Dynamics of the Multi-MeV Radiation Belt Electrons

In this study, we performed a series of long-term and individual storm simulations with and without hiss, chorus, and electromagnetic ion cyclotron (EMIC) waves. We compared simulation results incorporating different wave modes with Van Allen Probes flux observations to illustrate how hiss and chorus waves aid EMIC waves in depleting multi-MeV electrons. We found that EMIC, hiss, and chorus waves are required to reproduce satellite measurements in our simulations. Our results indicate that hiss waves play a dominant role in scattering near-equatorial mirroring electrons, and they assist EMIC waves, which scatter only small pitch angle electrons. The best agreement between the observations and the simulations (long-term and 17 January 2013 storm) is achieved when hiss, chorus, and EMIC waves are included.

Drozdov, A; Usanova, M.; Hudson, M.; Allison, H.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028282

EMIC waves; Radiation belts; Whistler waves; VERB code; Fokker-Planck diffusion equation; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not directly measurable, and hence are not known precisely, due to the inherent nonlinearity of the process and the variable boundary conditions. In this work, we demonstrate a probabilistic approach by inferring the values of the diffusion and loss term parameters, along with their uncertainty, in a Bayesian framework, where identification is obtained using the Van Allen Probe measurements. Our results show that the probabilistic approach statistically improves the performance of the model, compared to the empirical parameterization employed in the literature.

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

Quantifying the Effect of Plasmaspheric Hiss on the Electron Loss from the Slot Region

Abstract We present global statistical models of both wave amplitude and wave normal angle (WNA) of plasmaspheric hiss using Van Allen Probe-A observations. They utilize the time history of solar wind parameters, i.e., interplanetary magnetic field BZ and solar wind speed, and the AE index for each measurement of hiss waves as inputs. The solar wind parameter-based model generally results in higher performance than using only the AE index as an input. Both observations and model results reveal a clear dependence of hiss wave distribution on the magnetic local time (MLT): higher amplitudes with field-aligned (<30o) WNAs occur more frequently on the dayside than on the nightside. Such a tendency does not depend on magnetic latitude (MLAT), but slightly larger WNAs with a relatively low amplitude frequently appear for larger MLAT (>10o). We also examine how significantly the electron loss rates in the slot region can be changed by incorporating the model output of hiss waves into a diffusive transport simulation. Simulation results show that during a typical timescale (roughly a couple of days) of a corotating interaction region-driven storm, the nightside hiss waves with larger WNA (>30o) do not contribute to the electron loss in the slot region due to their low amplitude and large WNA, while dayside hiss with WNAs less than 30o and comparatively higher amplitudes leads to a fast drop in flux, especially for electrons of a few hundred keV.

Kim, Kyung-Chan; Shprits, Yuri; Wang, Dedong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2019JA027555

Plasmaspheric Hiss; Van Allen Probes; Electron slot region; Statistical modeling; Diffusion simulation; Wave-particle interaction

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Electron Radiation Belt code. We set up the outer L* boundary using data from the Geostationary Operational Environmental Satellites and validate the simulation results against satellite observations from both the Geostationary Operational Environmental Satellites and Van Allen Probe missions for 0.9-MeV electrons. Our results show that the position of the plasmapause plays a significant role in the dynamic evolution of relativistic electrons. The magnetopause shadowing effect is included by using last closed drift shell, and it is shown to significantly contribute to the dropouts of relativistic electrons at high L*. We perform simulations using four different empirical radial diffusion coefficient models for the GEM challenge events, and the results show that these simulations reproduce the general dynamic evolution of relativistic radiation belt electrons. However, in the events shown here, simulations using the radial diffusion coefficients from Brautigam and Albert (2000) produce the best agreement with satellite observations.

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not directly measurable, and hence are not known precisely, due to the inherent nonlinearity of the process and the variable boundary conditions. In this work, we demonstrate a probabilistic approach by inferring the values of the diffusion and loss term parameters, along with their uncertainty, in a Bayesian framework, where identification is obtained using the Van Allen Probe measurements. Our results show that the probabilistic approach statistically improves the performance of the model, compared to the empirical parameterization employed in the literature.

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

Quantifying the Effect of Plasmaspheric Hiss on the Electron Loss From the Slot Region

We present global statistical models of both wave amplitude and wave normal angle (WNA) of plasmaspheric hiss using Van Allen Probe-A observations. They utilize the time history of solar wind parameters, that is, interplanetary magnetic field BZ and solar wind speed, and the AE index for each measurement of hiss waves as inputs. The solar wind parameter-based model generally results in higher performance than using only the AE index as an input. Both observations and model results reveal a clear dependence of hiss wave distribution on the magnetic local time (MLT): Higher amplitudes with field-aligned (<30o) WNAs occur more frequently on the dayside than on the nightside. Such a tendency does not depend on magnetic latitude (MLAT), but slightly larger WNAs with a relatively low amplitude frequently appear for larger MLAT (>10o). We also examine how significantly the electron loss rates in the slot region can be changed by incorporating the model output of hiss waves into a diffusive transport simulation. Simulation results show that during a typical timescale (roughly a couple of days) of a corotating interaction region-driven storm, the nightside hiss waves with larger WNA (>30o) do not contribute to the electron loss in the slot region due to their low amplitude and large WNA, while dayside hiss with WNAs less than 30o and comparatively higher amplitudes leads to a fast drop in flux, especially for electrons of a few hundred keV.

Kim, Kyung-Chan; Shprits, Yuri; Wang, Dedong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027555

Plasmaspheric Hiss; Van Allen Probes; Electron slot region; Statistical modeling; Diffusion simulation; Wave-particle interaction

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Electron Radiation Belt code. We set up the outer L* boundary using data from the Geostationary Operational Environmental Satellites and validate the simulation results against satellite observations from both the Geostationary Operational Environmental Satellites and Van Allen Probe missions for 0.9-MeV electrons. Our results show that the position of the plasmapause plays a significant role in the dynamic evolution of relativistic electrons. The magnetopause shadowing effect is included by using last closed drift shell, and it is shown to significantly contribute to the dropouts of relativistic electrons at high L*. We perform simulations using four different empirical radial diffusion coefficient models for the GEM challenge events, and the results show that these simulations reproduce the general dynamic evolution of relativistic radiation belt electrons. However, in the events shown here, simulations using the radial diffusion coefficients from Brautigam and Albert (2000) produce the best agreement with satellite observations.

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

2019

Storm Time Depletions of Multi-MeV Radiation Belt Electrons Observed at Different Pitch Angles

During geomagnetic storms, the rapid depletion of the high-energy (several MeV) outer radiation belt electrons is the result of loss to the interplanetary medium through the magnetopause, outward radial diffusion, and loss to the atmosphere due to wave-particle interactions. We have performed a statistical study of 110 storms using pitch angle resolved electron flux measurements from the Van Allen Probes mission and found that inside of the radiation belt (L* = 3 - 5) the number of storms that result in depletion of electrons with equatorial pitch angle αeq = 30o is higher than number of storms that result in depletion of electrons with equatorial pitch angle αeq = 75o. We conclude that this result is consistent with electron scattering by whistler and electromagnetic ion cyclotron waves. At the outer edge of the radiation belt (L* >= 5.2) the number of storms that result in depletion is also large (~40\textendash50\%), emphasizing the significance of the magnetopause shadowing effect and outward radial transport.

Drozdov, A; Aseev, N.; Effenberger, F.; Turner, D.; Saikin, A.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027332

EMIC waves; multi-MeV electrons; Radiation belts; Van Allen Probes

Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015

In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4\textendash3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC waves that are likely to cause the depletion at small pitch angles and strong gradients in pitch angle distributions of relativistic electrons with energy above 5.2 MeV at low L values for this event. Very low frequency wave activity at other magnetic local time can be favorable for the loss of relativistic electrons at higher pitch angles. An illustrative calculation that combines the nominal pitch angle scattering rate due to whistler mode chorus at high pitch angles with the H+ band EMIC wave loss rate at low pitch angles produces loss on time scale observed at L=2.4\textendash3.2. At high L values and lower energies, radial loss to the magnetopause is a viable explanation.

Qin, Murong; Hudson, Mary; Li, Zhao; Millan, Robyn; Shen, Xiaochen; Shprits, Yuri; Woodger, Leslie; Jaynes, Allison; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA025726

cold ion composition; EMIC wave; minimum resonant energy; pitch angle diffusion; quasi-linear theory; relativistic electron loss; Van Allen Probes

Modulation of Locally Generated Equatorial Noise by ULF Wave

In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.

Zhu, Hui; Chen, Lunjin; Liu, Xu; Shprits, Yuri;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026199

linear growth rate; magnetosonic waves; Radiation belts; ULF waves; Van Allen Probes

Reanalysis of Ring Current Electron Phase Space Densities Using Van Allen Probe Observations, Convection Model, and Log-Normal Kalman Filter

Aseev, N.; Shprits, Y;

Published by: Space Weather      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018SW002110

data assimilation; inner magnetosphere; Kalman Filter; Reanalysis; ring current; Van Allen Probes

Reanalysis of ring current electron phase space densities using Van Allen Probe observations, convection model, and log-normal Kalman filter

Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics-based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log-transformed convection model of ring current electrons and Van Allen Probe data. We consider long-term dynamics of μ = 2.3 MeV/G and K = 0.3 G1/2RE electrons from 1 February 2013 to 16 June 2013. By using synthetic data, we show that the Kalman filter is capable of correcting errors in model predictions associated with uncertainties in electron lifetimes, boundary conditions, and convection electric fields. We demonstrate that reanalysis retains features which cannot be fully reproduced by the convection model such as storm-time earthward propagation of the electrons down to 2.5 RE. The Kalman filter can adjust model predictions to satellite measurements even in regions where data are not available. We show that the Kalman filter can adjust model predictions in accordance with observations for μ = 0.1, 2.3, and 9.9 MeV/G and constant K = 0.3 G1/2RE electrons. The results of this study demonstrate that data assimilation can improve performance of ring current models, better quantify model uncertainties, and help deeper understand the physics of the ring current particles.

Aseev, N.A.; Shprits, Y.Y.;

Published by: Space Weather      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018SW002110

data assimilation; inner magnetosphere; Kalman Filter; Reanalysis; ring current; Van Allen Probes

Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations

Plasmaspheric hiss waves commonly observed in high-density regions in the Earth\textquoterights magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal angles for hiss waves in plumes using Van Allen Probes observations during the period of October 2012 to December 2016. Statistical results show that a wide range of hiss wave amplitudes in plumes from a few picotesla to >100 pT is observed, but a modest (<20 pT) wave amplitude is more commonly observed regardless of geomagnetic activity in both the midnight-to-dawn and dusk sector. By contrast, stronger amplitude hiss occurs preferentially during geomagnetically active times in the dusk sector. The wave normal angles are distributed over a broad range from 0\textdegree to 90\textdegree with a bimodal distribution: a quasi-field-aligned population (<20\textdegree) with an occurrence rate of <60\% and an oblique one (>50\textdegree) with a relative low occurrence rate of ≲20\%. Therefore, from a statistical point of view, we confirm that the hiss intensity (a few tens of picotesla) and field-aligned hiss wave adopted in previous simulation studies are a reasonable assumption but stress that the activity dependence of the wave amplitude should be considered.

Kim, Kyung-Chan; Shprits, Yuri;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026458

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes

The dynamics of Van Allen belts revisited

Shprits, Yuri; Horne, Richard; Kellerman, Adam; Drozdov, Alexander;

Published by: Nature Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1038/nphys4350

Van Allen Probes

Electron intensity measurements by the Cluster/RAPID/IES instrument in Earth\textquoterights radiation belts and ring current

The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth\textquoterights magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high-energy electrons (<400 keV) and inner-zone protons (230-630 keV) in the radiation belts and ring current, the data have been rarely used for inner-magnetospheric science. The current paper presents two algorithms for background correction. The first algorithm is based on the empirical contamination percentages by both protons and electrons. The second algorithm uses simultaneous proton observations. The efficiencies of these algorithms are demonstrated by comparison of the corrected Cluster/RAPID/IES data with Van Allen Probes/Magnetic Electron Ion Spectrometer (MagEIS) measurements for 2012-2015. Both techniques improved the IES electron data in the radiation belts and ring current, as the yearly averaged flux intensities of the two missions show the ratio of measurements close to 1. We demonstrate a scientific application of the corrected IES electron data analyzing its evolution during solar cycle. Spin-averaged yearly mean IES electron intensities in the outer belt for energies 40-400 keV at L-shells between 4 and 6 showed high positive correlation with AE index and solar wind dynamic pressure during 2001- 2016. The relationship between solar wind dynamic pressure and IES electron measurements in the outer radiation belt was derived as a uniform linear-logarithmic equation.

Smirnov, A.; Kronberg, E.; Latallerie, F.; Daly, P.; Aseev, N.; Shprits, Y; Kellerman, A.; Kasahara, S.; Turner, D.; Taylor, M.;

Published by: Space Weather      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018SW001989

electrons; Radiation belts; Solar Cycle; Space weather; Van Allen Probes

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics.

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions

2018

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements

Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch-angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in-phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth rates further supports above conclusion. We suggest that exohiss waves have potential to become more significant due to the background plasma fluctuation.

Zhu, Hui; Shprits, Yuri; Chen, Lunjin; Liu, Xu; Kellerman, Adam;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2017JA025023

electromagnetic waves; Exohiss; linear theory; Radiation belts; Van Allen Probes

Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes\textquoteright measurements

We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes\textquoteright (1.1\textendash5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave events with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H+-band and 129 He+-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) Ahp, \~0.81 to 1.00 (\~0.62), observed in the dawn (dusk), 0000 < MLT <= 1200 (1200 < MLT <= 2400), sectors. Measurements of Ahp are found to decrease in the presence of EMIC wave activity. Ahp amplification factors are determined and vary with respect to EMIC wave-band and MLT. He+-band events generally require double (quadruple) the measured Ahp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.

Saikin, A.A.; Jordanova, V.K.; Zhang, J.C.; Smith, C.W.; Spence, H.E.; Larsen, B.A.; Reeves, G.D.; Torbert, R.B.; Kletzing, C.A.; Zhelavskaya, I.S.; Shprits, Y.Y.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 02/2018

YEAR: 2018     DOI: 10.1016/j.jastp.2018.01.024

EMIC waves Van Allen Probes Linear theory Wave generation; Van Allen Probes

Survey of the Favorable Conditions for Magnetosonic Wave Excitation

The ratio of the proton ring velocity (VR) to the local Alfven speed (VA), in addition to proton ring distributions, plays a key factor in the excitation of magnetosonic waves at frequencies between the proton cyclotron frequency fcp and the lower hybrid resonance frequency fLHR in the Earth\textquoterights magnetosphere. Here we investigate whether there is a statistically significant relationship between occurrences of proton rings and magnetosonic waves both outside and inside the plasmapause using particle and wave data from Van Allen Probe-A during the time period of October 2012 to December 2015. We also perform a statistical survey of the ratio of the ring energy (ER, corresponding to VR) to the Alfven energy (EA, corresponding to VA) to determine the favorable conditions under which magnetosonic waves in each of two frequency bands (fcp < f <= 0.5 fLHR and 0.5 fLHR < f < fLHR) can be excited. The results show that the magnetosonic waves in both frequency bands occur around the postnoon (12\textendash18 magnetic local time, MLT) sector outside the plasmapause when ER is comparable to or lower than EA, and those in lower-frequency bands (fcp < f <= 0.5 fLHR) occur around the postnoon sector inside the plasmapause when ER/EA > ~9. However, there is one discrepancy between occurrences of proton rings and magnetosonic waves in low-frequency bands around the prenoon sector (6\textendash12 MLT) outside the plasmapause, which suggests either that the waves may have propagated during active time from the postnoon sector after being excited during quiet time, or they may have locally excited in the prenoon sector during active time.

Kim, Kyung-Chan; Shprits, Yuri;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024865

magnetosonic equatorial noise; proton ring distribution; Van Allen Probes

2017

Empirical modeling of the plasmasphere dynamics using neural networks

We propose a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2<=L<=6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth\textquoterights plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96-hour time history of Kp, AE, SYM-H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the night side and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in-situ observations by using machine learning techniques.

Zhelavskaya, Irina; Shprits, Yuri; c, Maria;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024406

inner magnetosphere; Machine learning; Models; neural networks; plasmasphere; Van Allen Probes

Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes

Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from Van Allen Probe particle data as a function of time and three adiabatic invariants between 9 October and 29 November 2012. New local minimums in the profiles are accompanied by the narrowing of normalized pitch angle distributions and ground-based detection of EMIC waves. Such a correlation may be indicative of ultrarelativistic electron precipitation into the Earth\textquoterights atmosphere caused by resonance with EMIC waves.

Aseev, N.; Shprits, Y; Drozdov, A; Kellerman, A.; Usanova, M.; Wang, D.; Zhelavskaya, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024485

electron loss; EMIC waves; Radiation belts; ultrarelativistic electrons; Van Allen Probes; wave-particle interactions

EMIC wave parameterization in the long-term VERB code simulation

Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1 year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we compare results of the simulation with the Van Allen Probes observations. The comparison shows that modeling with EMIC waves, parameterized by solar wind dynamic pressure, provides a better agreement with the observations among considered parameterizations. The simulation with EMIC waves improves the dynamics of ultrarelativistic fluxes and reproduces the formation of the local minimum in the phase space density profiles.

Drozdov, A; Shprits, Y; Usanova, M.; Aseev, N.; Kellerman, A.; Zhu, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024389

EMIC; Radiation belts; Van Allen Probes; VERB code

Dependence of the amplitude of magnetosonic waves on the solar wind and AE index using Van Allen Probes

We present the dependence of the magnetosonic wave amplitudes both outside and inside the plasmapause on the solar wind and AE index using Van Allen Probe-A spacecraft during the time period of 1 October 2012 to 31 December 2015, based on a correlation and regression analysis. Solar wind parameters considered are the southward interplanetary magnetic field (IMF BS), solar wind number density (NSW), and bulk speed (VSW). We find that the wave amplitudes outside (inside) the plasmapause are well correlated with the preceding AE, IMF BS, and NSW with time delays, each corresponding to 2\textendash3 h (3\textendash4 h), 4\textendash5 h (3\textendash4 h), and 2\textendash3 h (8\textendash9 h), while the correlation with VSW is ambiguous both inside and outside the plasmapause. As measured by the correlation coefficient, the IMF BS is the most influential solar wind parameter that affects the dayside wave amplitudes both outside and inside the plasmapause, while NSW contributes to enhancing the duskside waves outside the plasmapause. The AE effect on wave amplitudes is comparable to that of IMF BS. More interestingly, regression with time histories of the solar wind parameters and the AE index preceding the wave measurements outside the plasmapause shows significant dependence on the IMF BS, NSW, and AE: the region of peak coefficients is changed with time delay for IMF BS and AE, while isolated peaks around duskside remain gradually decrease with time for NSW. In addition, the regression with magnetosonic waves inside the plasmapause shows high coefficients around prenoon sector with preceding IMF BS and VSW.

Kim, Kyung-Chan; Shprits, Yuri;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017JA024094

magnetosonic equatorial noise; solar wind dependence; Van Allen Probes

Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport

Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch angle, energy, and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

Drozdov, A; Shprits, Y; Aseev, N.; Kellerman, A.; Reeves, G.;

Published by: Space Weather      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/swe.v15.110.1002/2016SW001426

radial diffusion; Radiation belts; Van Allen Probes; VERB code

2016

Statistical Properties of the Radiation Belt Seed Population

We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of 100s of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.

Boyd, A.J.; Spence, H.E.; Huang, C.-L.; Reeves, G.; Baker, D.; Turner, D.L.; Claudepierre, S.; Fennell, J.; Blake, J.; Shprits, Y.Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022652

Phase space density; Radiation belt; seed population; Van Allen Probes

On the Time Needed to Reach an Equilibrium Structure of the Radiation Belts

In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τDiffusion/τloss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (<=3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp >= 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.

Ripoll, J.; Loridan, V.; Cunningham, G.; Reeves, G.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2015JA022207

Radiation belts; Van Allen Probes

Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA\textquoterights Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

Zhelavskaya, I.; Spasojevic, M.; Shprits, Y; Kurth, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022132

electron number density; neural networks; Van Allen Probes

New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements

Energetic electron observations in Earth\textquoterights radiation belts are typically sparse and multi-point studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross-calibration into two parts \textendash one that removes any spectral assumptions from the CXD flux calculation, and one that compares the energy spectra \textendash we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra we use a combination of four distributions that, together, capture a wide range of observed spectral shapes. Our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron-Proton Telescope (REPT) on Van Allen Probes as a \textquotedblleftgold standard\textquotedblright we demonstrate that the CXD instruments are well-understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies ≲4 MeV. We present data from 17 CXD-equipped GPS satellites covering the 2015 \textquotedblleftSt. Patrick\textquoterights Day\textquotedblright geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation, and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.

Orlova, Ksenia; Shprits, Yuri; Spasojevic, Maria;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015JA021878

Global Positioning System; Van Allen Probes

2015

Global Empirical Models of Plasmaspheric Hiss using Van Allen Probes

Plasmaspheric hiss is a whistler mode emission that permeates the Earth\textquoterights plasmasphere and is a significant driver of energetic electron losses through cyclotron-resonant pitch angle scattering. The EMFISIS instrument on the Van Allen Probes mission provides vastly improved measurements of the hiss wave environment including continuous measurements of the wave magnetic field cross-spectral matrix and enhanced low frequency coverage. Here, we develop empirical models of hiss wave intensity using two years of Van Allen Probes data. First, we describe the construction of the hiss database. Then, we compare the hiss spectral distribution and integrated wave amplitude obtained from Van Allen Probes to those previously extracted from the CRRES mission. Next, we develop a cubic regression model of the average hiss magnetic field intensity as a function of Kp, L, magnetic latitude and magnetic local time. We use the full regression model to explore general trends in the data and use insights from the model to develop a simplified model of wave intensity for straightforward inclusion in quasi-linear diffusion calculations of electron scattering rates.

Spasojevic, M.; Shprits, Y.Y.; Orlova, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021803

Electron scattering; Empirical Model; inner magnetosphere; Plasmaspheric Hiss; Van Allen Probes

Combined Convective and Diffusive Simulations: VERB-4D Comparison with March 17, 2013 Van Allen Probes Observations

This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. The results of the 4D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.

Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Spense, Harlan; Reeves, Geoffrey; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065230

inner magnetosphere; numerical simulations; Radiation belts; ring current; Van Allen Probes; wave-particle interactions

Global and comprehensive analysis of the inner magnetosphere as a coupled system: Physical understanding and applications

The third Inner Magnetosphere Coupling (IMC III) workshop was held March 2015 at University of California, Los Angeles. The workshop included extensive discussion of space weather and applications bring together scientists from the solar wind, magnetosphere and ionospheric communities as well as space weather stakeholders and researchers focusing on translational research and applications in industry.

Shprits, Y; Spasojevic, M.;

Published by: Space Weather      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2015SW001295

inner magnetosphere; Space weather; workshop

Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements

In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an additional loss mechanism is operational and efficient for these high energies. The most likely mechanism for explaining the observed loss at ultra-relativistic energies is scattering by the Electro-Magnetic Ion Cyclotron waves.

Drozdov, A; Shprits, Y; Orlova, K.G.; Kellerman, A.; Subbotin, D.; Baker, D.; Spence, H.E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020637

EMIC waves; Long-term simulation; Van Allen Probes; VERB code

2014

Characterization of the energy-dependent response of riometer absorption

Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth\textquoterights ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth\textquoterights magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with ~ 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlation analysis between signatures observed by riometer stations, and assuming electron motion due to gradient and curvature drift, results in inferred energies of 10-100 keV, with a clear maximum in occurrence for 40-60 keV electrons. One event is considered in detail utilizing riometer absorption signatures obtained from several stations. The mean inferred energies for the initial rise time and peak of the absorption after correction for electric field effects were ~70 keV, and ~60 keV, respectively. The analyses presented provide a means to characterize the energy of electrons to which riometers are responding in both a statistical sense, and during the evolution of individual events.

Kellerman, A.; Shprits, Y; Makarevich, R.; Spanswick, E.; Donovan, E.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020027

cosmic noise absorption; electron energy; particle modeling; Radiation belts; riometer; electron precipitation

Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed.

Pakhotin, I.; Drozdov, A; Shprits, Y; Boynton, R.; Subbotin, D.; Balikhin, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020238

Radiation belts; Space weather

Survey analysis of chorus intensity at Saturn

In order to conduct theoretical studies or modeling of pitch angle scattering of electrons by whistler mode chorus emission at Saturn, a knowledge of chorus occurrence and magnetic intensity levels, PB, as well as the distribution of PB relative to frequency and spatial parameters is essential. In this paper an extensive survey of whistler mode magnetic intensity levels at Saturn is carried out, and Gaussian fits of PB are performed. We fit the spectrum of wave magnetic intensity between the lower hybrid frequency and fceq/2 and for frequencies in the interval fceq/2 < f < 0.9 fceq, where fceq is the cyclotron frequency mapped to the equator. Saturn chorus is observed over most local times, but is dominant on the nightside in the range of 4.5 < L <7.5, with minimum power at the equator and peak power in the range of 5\textdegree < λ < 10\textdegree. Saturn wave magnetic intensity averaged in frequency bins peaks in the range of 10-5 < PB < 10-4 nT2 for 0.4 < β < 0.5 (β = f/fceq). Gaussian fits of PB with frequency and latitude are obtained for lower band chorus. Plasma injection regions are occasionally encountered with significant chorus power levels. Upper band chorus is seen almost exclusively within plasma injection regions, and the number of events is very limited, but when present, the average levels of PB can be higher than the lower band chorus. The overall magnetic intensity contribution of the upper band, however, is insignificant relative to the lower band.

Menietti, J.; Averkamp, T.; Groene, J.; Horne, R.; Shprits, Y; Woodfield, E.; Hospodarsky, G.; Gurnett, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.1010.1002/2014JA020523

Space physics

Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations

We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90\textdegree pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90\textdegree. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2\textendash8 MeV) electron loss but which is confined to pitch angles below around 45\textdegree and not affecting the core distribution.

Usanova, M.; Drozdov, A.; Orlova, K.; Mann, I.; Shprits, Y.; Robertson, M.; Turner, D.; Milling, D.; Kale, A.; Baker, D.; Thaller, S.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL059024

Van Allen Probes

Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\textquoterights radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 \textpm 0.5). This reveals graphically that both \textquotedblleftcompeting\textquotedblright mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

Baker, D.; Jaynes, A.; Li, X.; Henderson, M.; Kanekal, S.; Reeves, G.; Spence, H.; Claudepierre, S.; Fennell, J.; Hudson, M.; Thorne, R.; Foster, J.; Erickson, P.; Malaspina, D.; Wygant, J.; Boyd, A.; Kletzing, C.; Drozdov, A.; Shprits, Y;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL058942

Van Allen Probes

Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased >90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere.

Foster, J.; Erickson, P.; Baker, D.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Reeves, G.; Thaller, S.; Spence, H.; Shprits, Y; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058438

Van Allen Probes

2013

Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts

Radiation in space was the first discovery of the space age. Earth\textquoterights radiation belts consist of energetic particles that are trapped by the geomagnetic field and encircle the planet1. The electron radiation belts usually form a two-zone structure with a stable inner zone and a highly variable outer zone, which forms and disappears owing to wave\textendashparticle interactions on the timescale of a day, and is strongly influenced by the very-low-frequency plasma waves. Recent observations revealed a third radiation zone at ultrarelativistic energies2, with the additional medium narrow belt (long-lived ring) persisting for approximately 4 weeks. This new ring resulted from a combination of electron losses to the interplanetary medium and scattering by electromagnetic ion cyclotron waves to the Earth\textquoterights atmosphere. Here we show that ultrarelativistic electrons can stay trapped in the outer zone and remain unaffected by the very-low-frequency plasma waves for a very long time owing to a lack of scattering into the atmosphere. The absence of scattering is explained as a result of ultrarelativistic particles being too energetic to resonantly interact with waves at low latitudes. This study shows that a different set of physical processes determines the evolution of ultrarelativistic electrons.

Shprits, Yuri; Subbotin, Dmitriy; Drozdov, Alexander; Usanova, Maria; Kellerman, Adam; Orlova, Ksenia; Baker, Daniel; Turner, Drew; Kim, Kyung-Chan;

Published by: Nature Physics      Published on: 11/2013

YEAR: 2013     DOI: 10.1038/nphys2760

RBSP; Van Allen Probes

Application of a new data operator-splitting data assimilation technique to the 3-D VERB diffusion code and CRRES measurements

In this study we present 3-D data assimilation using CRRES data and 3-D Versatile Electron Radiation Belt Model (VERB) using a newly developed operator-splitting method. Simulations with synthetic data show that the operator-splitting Kalman filtering technique proposed in this study can successfully reconstruct the underlying dynamic evolution of the radiation belts. The method is further verified by the comparison with the conventional Kalman filter. We applied the new approach to 3-D data assimilation of real data to globally reconstruct the dynamics of the radiation belts using pitch angle, energy, and L shell dependent CRRES observations. An L shell time cross section of the global data assimilation results for nearly equatorially mirroring particles and high and low values of the first adiabatic invariants clearly show the difference between the radial profiles of phase space density. At μ = 700 MeV/G cross section of the global reanalysis shows a clear peak in the phase space density, while at lower energy of 70 MeV/G the profiles are monotonic. Since the radial profiles are obtained from one global reanalysis, the differences in the profiles reflect the differences in the underlying physical processes responsible for the dynamic evolution of the radiation belt energetic and relativistic electrons.

Shprits, Yuri; Kellerman, Adam; Kondrashov, Dmitri; Subbotin, Dmitriy;

Published by: Geophysical Research Letters      Published on: 10/2013

YEAR: 2013     DOI: 10.1002/grl.50969

data assimilation; Modeling; Radiation belts

Scattering rates of inner belt protons by EMIC waves: A comparison between test particle and diffusion simulations

Inner belt energetic protons are a hindrance to development of space technologies. The emission of electromagnetic ion cyclotron (EMIC) waves from spaceborne transmitters has been proposed as a way to solve this problem. The interaction between particles and narrowband emissions has been typically studied using nonlinear test particle simulations. We show that this formulation results in a random walk of the inner belt protons in velocity space. In this paper we compute bounce-averaged pitch angle diffusion rates from test particle simulations and compare them to those of quasi-linear theory for quasi-monochromatic EMIC waves interacting with inner belt protons. We find that the quasi-linear solution is not sensitive to the frequency bandwidth for narrow distributions. Bounce-averaged diffusion coefficients from both approaches are in good agreement for all energies and pitch angles. The interaction with inner belt protons, therefore, can be addressed using quasi-linear diffusion codes, which allows faster exploration of parameter space.

de Soria-Santacruz, M.; Orlova, K.; Martinez-Sanchez, M.; Shprits, Y;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50925

EMIC; inner belt; wave-particle interactions

2012

Explaining sudden losses of outer radiation belt electrons during geomagnetic storms

The Van Allen radiation belts were first discovered in 1958 by the Explorer series of spacecraft1. The dynamic outer belt consists primarily of relativistic electrons trapped by the Earth\textquoterights magnetic field. Magnetospheric processes driven by the solar wind2 cause the electron flux in this belt to fluctuate substantially over timescales ranging from minutes to years3. The most dramatic of these events are known as flux \textquoterightdropouts\textquoteright and often occur during geomagnetic storms. During such an event the electron flux can drop by several orders of magnitude in just a few hours4, 5 and remain low even after a storm has abated. Various solar wind phenomena, including coronal mass ejections and co-rotating interaction regions6, can drive storm activity, but several outstanding questions remain concerning dropouts and the precise channels to which outer belt electrons are lost during these events. By analysing data collected at multiple altitudes by the THEMIS, GOES, and NOAA\textendashPOES spacecraft, we show that the sudden electron depletion observed during a recent storm\textquoterights main phase is primarily a result of outward transport rather than loss to the atmosphere.

Turner, Drew; Shprits, Yuri; Hartinger, Michael; Angelopoulos, Vassilis;

Published by: Nature Physics      Published on: 01/2012

YEAR: 2012     DOI: 10.1038/nphys2185



  1      2