Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





A background correction algorithm for Van Allen Probes MagEIS electron flux measurements



AuthorClaudepierre, S.; O\textquoterightBrien, T.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Looper, M.; Mazur, J.; Mulligan, T.; Spence, H.; Reeves, G.; Friedel, R.; Henderson, M.; Larsen, B.;
KeywordsBackground contamination; Inner radiation belt; outer radiation belt; Particle measurements; Radiation belt; Spacecraft engineering; Van Allen Probes
AbstractWe describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes MagEIS electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30-500 keV) and in regions of geospace where multi-MeV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).
Year of Publication2015
JournalJournal of Geophysical Research: Space Physics
Volume
Number of Pages
Section
Date Published06/2015
ISBN
URLhttp://doi.wiley.com/10.1002/2015JA021171
DOI10.1002/2015JA021171