Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 90 entries in the Bibliography.


Showing entries from 1 through 50


2021

Can Earth’s magnetotail plasma sheet produce a source of relativistic electrons for the radiation belts?

Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) the most intense levels of relativistic electrons are not accelerated in the solar wind or transported from the inner magnetosphere and thus must be accelerated rapidly (within ∼minutes or less) and efficiently across a broad region of the magnetotail itself; and iii) the highest intensity relativistic electrons observed by MMS were confined within only the central plasma sheet. The answer to the title question here is: yes, it can, however whether Earth’s plasma sheet actually does provide a source of several 100s keV to >1 MeV electrons to the outer belt and how often it does so remain important outstanding questions.

Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey;

Published by: Geophysical Research Letters      Published on: 09/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL095495

Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes

A Multi-instrument Study of a Dipolarization Event in the Inner Magnetosphere

Abstract A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on 22 September 2018. The spacecraft were located in the inner magnetosphere at L ∼ 6 − 7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was ∼ 1RE. Gradual dipolarization or an increase of the northward component BZ of the background field occurred on a timescale of minutes. Exploration of energization and Radiation in Geospace (ERG) located 0.5 MLT eastward at a similar L shell also measured a gradual increase. The spatial scale was of the order of 1 RE. On top of that, MMS and Probe B measured BZ increases, and a decrease in one case, on a timescale of seconds, accompanied by large electric fields with amplitudes > several tens of mV/m. Spatial scale lengths were of the order of the ion inertial length and the ion gyroradius. The inertial term in the momentum equation and the Hall term in the generalized Ohm’s law were sometimes non-negligible. These small-scale variations are discussed in terms of the ballooning/interchange instability (BICI) and kinetic Alfvén waves among others. It is inferred that physics of multiple scales was involved in the dynamics of this dipolarization event. This article is protected by copyright. All rights reserved.

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Cohen, I.; Cooper, M.; Ergun, R.; Farrugia, C.; Fennell, J.; Fuselier, S.; Gkioulidou, M.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Matsuoka, A.; Russell, C.; Shoji, M.; Strangeway, R.; Turner, D.; Vaith, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029294

Dipolarization; inner magnetosphere; Multiple Scale Dynamics; Van Allen Probes

RBSP-ECT Combined Pitch Angle Resolved Electron Flux Data Product

Abstract We describe a new data product combining pitch angle resolved electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration s Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of pitch-angle-resolved spectra for the entire Van Allen Probes mission. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product offers researchers a consistent cross calibrated data set to explore the particle dynamics of the inner magnetosphere across a wide range of energies. This article is protected by copyright. All rights reserved.

Boyd, A.J.; Spence, H.E.; Reeves, G.D.; Funsten, H.O; Skoug, R.K.; Larsen, B.A.; Blake, J.B.; Fennell, J.F.; Claudepierre, S.G.; Baker, D.N.; Kanekal, S.K.; Jaynes, A.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028637

Van Allen Probes; Radiation belts; ECT; MAGEis; REPT; HOPE

2019

Particle Dynamics in the Earth\textquoterights Radiation Belts: Review of Current Research and Open Questions

The past decade transformed our observational understanding of energetic particle processes in near-Earth space. An unprecedented suite of observational systems were in operation including the Van Allen Probes, Arase, MMS, THEMIS, Cluster, GPS, GOES, and LANL-GEO magnetospheric missions. They were supported by conjugate low-altitude measurements on spacecraft, balloons, and ground-based arrays. Together these significantly improved our ability to determine and quantify the mechanisms that control the build-up and subsequent variability of energetic particle intensities in the inner magnetosphere. The high-quality data from NASA\textquoterights Van Allen Probes are the most comprehensive in-situ measurements ever taken in the near-Earth space radiation environment. These observations, coupled with recent advances in radiation belt theory and modeling, including dramatic increases in computational power, has ushered in a new era, perhaps a \textquotedblleftgolden era,\textquotedblright in radiation belt research. We have edited a Journal of Geophysical Research: Space Science Special Collection dedicated to Particle Dynamics in the Earth\textquoterights Radiation Belts in which we gather the most recent scientific findings and understanding of this important region of geospace. This collection includes the results presented at the American Geophysical Union Chapman International Conference in Cascais, Portugal (03/2018) and many other recent and relevant contributions. The present article introduces and review the context, current research, and main questions that motivate modern radiation belt research divided into the following topics: (1) particle acceleration and transport, (2) particle loss, (3) the role of nonlinear processes, (4) new radiation belt modeling capabilities and the quantification of model uncertainties, and (5) laboratory plasma experiments.

Ripoll, Jean-Francois; Claudepierre, Seth; Ukhorskiy, Sasha; Colpitts, Chris; Li, Xinlin; Fennell, Joe; Crabtree, Chris;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA026735

inner magnetosphere; laboratory plasma experiments; Particle acceleration; particle loss; Radiation belts; Van Allen Probes

Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES-15 Measurements: 2012-2018

Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027331

energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. Arase did not observe Pc5 pulsations, while they were observed by RBSP-B. The clear dispersion signature of the relativistic electron fluctuations observed by Arase indicates that the source region is limited to the postnoon to the dusk sector. This is confirmed by RBSP-B and ground-magnetometer observations, where Pc5 pulsations are observed to drift-resonate with relativistic electrons on the duskside. Thus, Arase observed the drift-resonance signatures \textquotedblleftremotely,\textquotedblright whereas RBSP-B observed them \textquotedblleftlocally.\textquotedblright

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

RBSP-ECT Combined Spin-Averaged Electron Flux Data Product

We describe a new data product combining the spin-averaged electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration\textquoterights Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of spectra for September 2013 to the present. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product provides additional utility to the ECT data and offers a consistent cross calibrated data set for researchers interested in examining the dynamics of the inner magnetosphere across a wide range of energies.

Boyd, A.; Reeves, G.; Spence, H.; Funsten, H.; Larsen, B.; Skoug, R.; Blake, J.; Fennell, J.; Claudepierre, S.; Baker, D.; Kanekal, S.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026733

ECT; HOPE; MAGEis; Radiation belts; REPT; Van Allen Probes

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

2018

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

EMIC wave events during the four GEM QARBM challenge intervals

This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near-equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the REPT and MagEIS instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~ 4.0. In three other cases identifiable smaller and more short-lived dropouts appeared, and in five other cases these waves evidently had little or no effect.

Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018JA025505

Van Allen Probes

Evidence of Microbursts Observed Near the Equatorial Plane in the Outer Van Allen Radiation Belt

We present the first evidence of electron microbursts observed near the equatorial plane in Earth\textquoterights outer radiation belt. We observed the microbursts on March 31st, 2017 with the Magnetic Electron Ion Spectrometer and RBSP Ion Composition Experiment on the Van Allen Probes. Microburst electrons with kinetic energies of 29-92 keV were scattered over a substantial range of pitch angles, and over time intervals of 150-500 ms. Furthermore, the microbursts arrived without dispersion in energy, indicating that they were recently scattered near the spacecraft. We have applied the relativistic theory of wave-particle resonant diffusion to the calculated phase space density, revealing that the observed transport of microburst electrons is not consistent with the hypothesized quasi-linear approximation.

Shumko, Mykhaylo; Turner, Drew; O\textquoterightBrien, T.; Claudepierre, Seth; Sample, John; Hartley, D.; Fennell, Joseph; Blake, Bernard; Gkioulidou, Matina; Mitchell, Donald;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078451

Van Allen Probes

Modeling the Depletion and Recovery of the Outer Radiation Belt During a Geomagnetic Storm: Combined MHD and Test Particle Simulations

During geomagnetic storms the intensities of the outer radiation belt electron population can exhibit dramatic variability. Deep depletions in intensity during the main phase are followed by increases during the recovery phase, often to levels that significantly exceed their pre-storm values. To study these processes, we simulate the evolution of the outer radiation belt during the 17 March 2013 geomagnetic storm using our newly-developed radiation belt model (CHIMP) based on test particle and coupled 3D ring current and global MHD simulations, and driven solely with solar wind and F10.7 flux data. Our approach differs from previous work in that we use MHD information to identify regions of strong, bursty, and azimuthally localized Earthward convection in the magnetotail where test particles are then seeded. We validate our model using in situ Van Allen Probe electron intensities over a multi-day period and show that our model is able to reproduce meaningful qualitative and quantitative agreement. Analysis of our model enables us to study the processes that govern the transition from the pre- to post-storm outer belt. Our analysis demonstrates that during the early main phase of the storm the pre-existing outer belt is largely wiped out via magnetopause losses and subsequently a new outer belt is created during a handful of discrete, mesoscale injections. Finally, we demonstrate the potential importance of magnetic gradient trapping in the transport and energization of outer belt electrons using a controlled numerical experiment.

Sorathia, K.; Ukhorskiy, A; Merkin, V.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018JA025506

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; Van Allen Probes

An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements

Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L-shell (L=1 \textendash 6), magnetic local time (MLT), electron energy (~30 keV \textendash 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV electrons, model results show more significant day-night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90\textdegree pitch angle (PA) and lower fluxes at lower PAs for higher energy electrons and during active times are also present, which could be due to EMIC wave scattering. For 100s of keV electrons, cap PADs are generally present in the slot region during quiet times and their energy-dependent features are consistent with hiss wave scattering, while during active times, cap PADs are less significant especially at outer part of slot region, which could be due to the complex energizing and transport processes. 90\textdegree-minimum PADs are persistently present in the inner belt and appear in the slot region during active times, and minima at 90\textdegree PA are more significant for electrons with higher energies, which could be a critical evidence in identifying the underlying physical processes responsible for the formation of 90\textdegree-minimum PADs.

Zhao, H.; Friedel, R.; Chen, Y.; Reeves, G.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.; Claudepierre, S.; Fennell, J.; Blake, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2018JA025277

Empirical Model; Geomagnetic storms; inner belt and slot region; Pitch angle distribution; radiation belt electrons; Van Allen Probes

The global statistical response of the outer radiation belt during geomagnetic storms

Using the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non-adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm-time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) dependent behaviour in the seed (150 MeV/G), relativistic (1000 MeV/G), and ultra-relativistic (4000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, whilst the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ-dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

Murphy, Kyle; Watt, C.; Mann, Ian; Rae, Jonathan; Sibeck, David; Boyd, A.; Forsyth, C.; Turner, D.; Claudepierre, S.; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 04/2018

YEAR: 2018     DOI: 10.1002/2017GL076674

Geomagnetic storms; magnetospheric dynamics; Radiation belts; Solar Wind-Magnetosphere Coupling; statistical analysis; Van Allen Probes

Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events

We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17\textendash18 March 2013 and non\textendashstorm time of 19\textendash20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17\textendash18 March 2013, the SYM-H minimum reached -130 nT, intense chorus waves (peak Bw ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV to several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19\textendash20 September 2013, the SYM-H remained higher than -30 nT, modestly intense chorus waves (peak Bw ~80 pT) occurred at L > 5.5, and electron fluxes at energies up to 3 MeV increased by a factor of ~5 at L > 5.5. The two electron flux enhancement events were simulated using the available wave distribution and diffusion coefficients from the GEM focus group Quantitative Assessment of Radiation Belt Modeling. By comparing the individual roles of local electron heating and radial transport, our simulation indicates that resonant interaction with chorus waves is the dominant process that accounts for the electron flux enhancement during the storm time event particularly near the flux peak locations, while radial diffusion by ultralow-frequency waves plays a dominant role in the enhancement during the non\textendashstorm time event. Incorporation of both processes reasonably reproduces the observed location and magnitude of electron flux enhancement.

Ma, Q.; Li, W.; Bortnik, J.; Thorne, R.; Chu, X.; Ozeke, L.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2017JA025114

electron accelerationl whistler mode waves; radial diffusion; radiation belt simulation; Van Allen Probes; Van Allen Probes observation

2017

Van Allen Probes measurements of energetic particle deep penetration into the low L region (L<4) during the storm on 8 April 2016

Using measurements from the Van Allen Probes, a penetration event of 10s \textendash 100s of keV electrons and 10s of keV protons into the low L-shells (L<4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT-asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convection during geomagnetic active times to be the cause of energetic proton deep penetration during this event. The observed MLT difference of 10s \textendash 100s of keV electron penetration is completely different from 10s of keV protons and cannot be well explained by inward radial diffusion, convection of plasma sheet electrons, or transport of trapped electrons by enhanced convection electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L-shells, should be MLT-localized.

Zhao, H.; Baker, D.; Califf, S.; Li, X.; Jaynes, A.; Leonard, T.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017JA024558

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32\textdegree < MLat < -15\textdegree), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLat ~ -31\textdegree). Most of the elements had \textquotedbllefthook\textquotedblright like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30\textdegree from the direction anti-parallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing, and with a smaller lower-hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet, we cannot rule out the possibility that the drift waves are produced by the anti-parallel current associated with the fast flows, leaving the source for the electron holes unexplained.

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes

This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at < 600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy < 60 keV and enhanced whistler-mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L-shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger, ion and electron injection did not penetrate to L < 6.6, but several of the smaller, electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron vs. ion injections, this event presents challenges to the current conceptual models of energetic particle injections.

Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024554

energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions

Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region

We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp \textquotelefttop-hat\textquoteright shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024452

Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere

Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13

Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts.

Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M.; Ergun, Robert; Russell, C.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017GL074895

electric field response; interplanetary shock; magnetopause; Radiation belt; Van Allen Probes

Dominance of high energy (>150 keV) heavy ion intensities in Earth\textquoterights middle to outer magnetosphere

Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies math formula150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observations and those from the SSD-based Fly\textquoterights Eye Energetic Particle Spectrometer (FEEPS) sensors provides critical support to the veracity of the measurement. Similar observations from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments aboard the Van Allen Probes spacecraft extend the ion composition measurements into the middle magnetosphere and reveal a strongly proton-dominated environment at math formula, but decreasing proton intensities at math formula. It is concluded that the intensity dominance of the heavy ions at higher energies (>150 keV) arises from the existence of significant populations of multiply-charged heavy ions, presumably of solar wind origin.

Cohen, Ian; Mitchell, Donald; Kistler, Lynn; Mauk, Barry; Anderson, Brian; Westlake, Joseph; Ohtani, Shinichi; Hamilton, Douglas; Turner, Drew; Blake, Bern; Fennell, Joseph; Jaynes, Allison; Leonard, Trevor; Gerrard, Andrew; Lanzerotti, Louis; Allen, Robert; Burch, James;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024351

energetic ion composition; magnetospheric ion composition; Magnetospheric Multiscale (MMS); outer magnetosphere; ring current composition; suprathermal ions; Van Allen Probes

The hidden dynamics of relativistic electrons (0.7-1.5~MeV) in the inner zone and slot region

We present measurements of relativistic electrons (0.7\textendash1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that \~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As \~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these two events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Finally, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.

Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Clemmons, J.; Looper, M.; Mazur, J.; Roeder, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023719

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

The hidden dynamics of relativistic electrons (0.7-1.5~MeV) in the inner zone and slot region

We present measurements of relativistic electrons (0.7\textendash1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that \~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As \~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these two events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Finally, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.

Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Clemmons, J.; Looper, M.; Mazur, J.; Roeder, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023719

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM/H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset, but to an extent that varied with frequency band, MLT, and storm phase, and location relative to the PP. The fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.

Tetrick, S.; Engebretson, M.; Posch, J.; Olson, C.; Smith, C.; Denton, R.; Thaller, S.; Wygant, J.; Reeves, G.; MacDonald, E.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023392

EMIC waves; Magnetosphere; Plasmapause; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important\textemdashand potentially dominant\textemdashsource of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off,\textquotedblright geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1029/1999JA900445

energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

2016

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed three orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important - and potentially dominant - source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day timescales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off\textquotedblright, geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023600

2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Characteristic energy range of electron scattering due to plasmaspheric hiss

We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4\textendash200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2\textendash6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV\textendash1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016JA023311

electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation

Current energetic particle sensors

Several energetic particle sensors designed to make measurements in the current decade are described and their technology and capabilities discussed and demonstrated. Most of these instruments are already on orbit or approaching launch. These include the Magnetic Electron Ion Spectrometers (MagEIS) and the Relativistic Electron Proton Telescope (REPT) that are flying on the Van Allen Probes, the Fly\textquoterights Eye Electron Proton Spectrometers (FEEPS) flying on the Magnetospheric Multiscale (MMS) mission, and Dosimeters flying on the AC6 Cubesat mission. We focus mostly on the electron measurement capability of these sensors while providing summary comments of their ion measurement capabilities if they have any.

Fennell, J.; Blake, J.; Claudepierre, S.; Mazur, J.; Kanekal, S.; O\textquoterightBrien, P.; Baker, D.; Crain, W.; Mabry, D.; Clemmons, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022588

energetic particles; sensors; Van Allen Probes

Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event

Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1 MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90\textdegree), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.

Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022517

Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock

Trapped electrons in Earth\textquoterights outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E > 6 MeV were injected deep into the magnetosphere at L ≈ 3 within about 2 min of the shock impact. However, electrons in the energy range of ≈250 keV to ≈900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.

Kanekal, S.; Baker, D.; Fennell, J.; Jones, A.; Schiller, Q.; Richardson, I.; Li, X.; Turner, D.; Califf, S.; Claudepierre, S.; Wilson, L.; Jaynes, A.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022596

electron; energizaiton; IP shock; ultrarelativsti; Van Allen Probes

Direct evidence for EMIC wave scattering of relativistic electrons in space

Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth\textquoterights outer radiation belt.

Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022521

electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction

Inner zone and slot electron radial diffusion revisited

Using recent data from NASA\textquoterights Van Allen Probes, we estimate the quiet time radial diffusion coefficients for electrons in the inner radiation belt (L < 3) with energies from ~50 to 750 keV. The observations are consistent with dynamics dominated by pitch angle scattering and radial diffusion. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate phase space density over pitch angle to obtain a \textquotedblleftbundle content\textquotedblright that is invariant to pitch angle scattering, except for atmospheric loss. We estimate the effective radial diffusion coefficient from the temporal and radial variation of the bundle content. We show that our diffusion coefficients agree well with previously determined values obtained in the 1960s and 1970s and follow the form one expects for radial diffusion caused by exponentially decaying impulses in the large-scale electrostatic potential.

O\textquoterightBrien, T.; Claudepierre, S.; Guild, T.; Fennell, J.; Turner, D.; Blake, J.; Clemmons, J.; Roeder, J.;

Published by: Geophysical Research Letters      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016GL069749

Inner zone; radial diffusion; Radiation belt; Van Allen Probes

Statistical Properties of the Radiation Belt Seed Population

We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of 100s of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.

Boyd, A.J.; Spence, H.E.; Huang, C.-L.; Reeves, G.; Baker, D.; Turner, D.L.; Claudepierre, S.; Fennell, J.; Blake, J.; Shprits, Y.Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022652

Phase space density; Radiation belt; seed population; Van Allen Probes

Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022400

chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a \textquotedblleftseed\textquotedblright electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes

Simulation of energy-dependent electron diffusion processes in the Earth\textquoterights outer radiation belt

The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth\textquoterights radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. This study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.

Ma, Q.; Li, W.; Thorne, R.; Nishimura, Y.; Zhang, X.-J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022507

electron acceleration and loss; energy-dependent diffusion; radial diffusion; radiation belt simulation; Van Allen Probes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12\% for the moderate storm and ~7\% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30\% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

Zhao, H.; Li, X.; Baker, D.; Claudepierre, S.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016JA022358

deep injections; Geomagnetic storms; ring current; ring current energy content; ring current electrons; Van Allen Probes

Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves

The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6\textendash3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions.

Li, Jinxing; Bortnik, Jacob; Thorne, Richard; Li, Wen; Ma, Qianli; Baker, Daniel; Reeves, Geoffrey; Fennell, Joseph; Spence, Harlan; Kletzing, Craig; Kurth, William; Hospodarsky, George; Angelopoulos, Vassilis; Blake, Bernard.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016JA022370

butterfly distributions; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

2015

Survey of radiation belt energetic electron pitch angle distributions based on the Van Allen Probes MagEIS measurements

A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sinnα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index and L-shell. The difference in electron PADs between the inner and outer belt is distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L-shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Besides being dependent on electron energy, magnetic activity and L-shell, the results show a clear dependence on MLT, with higher n values on the dayside.

Shi, Run; Summers, Danny; Ni, Binbin; Fennell, Joseph; Blake, Bernard; Spence, Harlan; Reeves, Geoffrey;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021724

pitch angle distributions; Van Allen Probes

Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.

We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energies while being confined to higher L-shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L-shells for lower energies. Both boundaries are nearly straight in log(energy) vs. L-shell space. At energies below a few hundred keV radiation belt electron penetration through the slot region into the inner zone is commonplace but the number and frequency of \textquotedblleftslot filling\textquotedblright events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L-shell dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

Reeves, Geoffrey; Friedel, Reiner; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Claudepierre, Seth; Fennell, Joseph; Turner, Drew; Denton, Mick; Spence, H.; Blake, Bernard; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021569

Acceleration; energetic particles; Inner zone; Outer Zone; Radiation belts; Slot region; Van Allen Probes

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements

The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. Data from the MagEIS suite of sensors measures energy spectra, fluxes, and yields electron deposition rates that can cause internal charging. We use omni-directional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding (similar to Fennell et al., 2010). We show examples of charge deposition rates during times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from late 2012 through 2013. These charge deposition rates are related to charging levels quite possibly encountered by shielded dielectrics with different resistivity. Temporal profiles showing the long-term long charge deposition-rate and estimated charge density levels are an indicator of the level of internal charging rates that satellites in the inner magnetosphere could experience. These results are compared to charge densities that can induce internal ESD (IESD).

Skov, Mulligan; Fennell, J.F.; Roeder, J.L.; Blake, J.B.; Claudepierre, S.G.;

Published by:       Published on: 09/2015

YEAR: 2015     DOI: 10.1109/TPS.2015.2468214

Van Allen Probes

Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements

The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related to charging levels quite possibly encountered by shielded dielectrics with different resistivities. Using a simple model, we find temporal profiles for different materials showing the long-term charge deposition rate and estimated charge density levels reaching high levels. These levels are an indicator of internal charging rates that satellites might possibly experience in the inner magnetosphere. The results are compared with charge densities that can induce internal electrostatic discharge.

Skov, Tamitha; Fennell, Joseph; Roeder, James; Blake, Bernard; Claudepierre, Seth;

Published by: IEEE Transactions on Plasma Science      Published on: 09/2015

YEAR: 2015     DOI: 10.1109/TPS.2015.2468214

artificial satellites; dielectric materials; electrons; Energy measurement; MAGEis; Magnetosphere; particle detectors; protons; Van Allen Probes

Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations

During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both MagEIS and REPT instruments on the Van Allen Probes mission. Data from the MagEIS instrument establishes the behavior of lower energy (<1MeV) electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the EMFISIS instrument on board Van Allen Probes, SCM and FGM instruments onboard THEMIS, and the low altitude polar orbiting POES satellite. These observations suggest that, during this time period, both radial transport and local in-situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (<1MeV) electrons, while the effects of in-situ energization by interaction of chorus waves are prominent in the higher energy electrons.

Kanekal, S.; Baker, D.; Henderson, M.; Li, W.; Fennell, J.; Zheng, Y.; Richardson, I.; Jones, A.; Ali, A.; Elkington, S.; Jaynes, A.; Li, X.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021395

CME; HSS; Van Allen Probes; IP shock; relativistic electrons

The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute more significantly to the ring current than those with higher energies; while the higher energy protons dominate during the recovery phase and quiet times. The enhancements of higher energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the March 29, 2013 storm we investigated in detail, the contribution from O+ is ~25\% of the ring current energy content during the main phase, and the majority of that comes from < 50 keV O+. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. The results show that the measured ring current ions contribute about half of the Dst depression.

Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2015JA021533

Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes

Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations

Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by one order of magnitude in less than 3 hours in the outer radiation belt (L>4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064955

electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes



  1      2