Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm



AuthorXiao, Fuliang; Yang, Chang; He, Zhaoguo; Su, Zhenpeng; Zhou, Qinghua; He, Yihua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;
KeywordsVan Allen Probes
AbstractThe recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17\textendash19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 - 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1\textendash0.5fce (the electron equatorial gyrofrequency), with a peak spectral density \~10-4 nT2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102\textendash103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planck diffusion equation. Numerical simulations demonstrate that the lower-band chorus waves indeed produce such huge enhancements in relativistic electron fluxes within 15 h, fitting well with the observation.
Year of Publication2014
JournalJournal of Geophysical Research: Space Physics
Volume119
Number of Pages3325-3332
Section
Date Published05/2014
ISBN
URLhttp://doi.wiley.com/10.1002/2014JA019822
DOI10.1002/2014JA019822