Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 160 entries in the Bibliography.


Showing entries from 1 through 50


2021

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up to ∼7.7 MeV in the outer radiation belt, observed by the Van Allen Probes mission. During this March 2017 event, multi-MeV electron flux oscillations at the electron drift frequency appeared coincidently with enhanced Pc5 ULF wave activity and lasted for over 10 hours in the center of the outer belt. The amplitude of such flux oscillations is well correlated with the radial gradient of electron phase space density (PSD), with almost no oscillation observed near the PSD peak. The temporal evolution of the PSD radial profile also suggests the dominant role of radial diffusion in multi-MeV electron dynamics during this event. By combining these observations, we conclude that these multi-MeV electron flux oscillations are caused by the resonant interactions between electrons and broadband Pc5 ULF waves and are an indicator of the ongoing radial diffusion process during this event. They contain essential information of radial diffusion and have the potential to be further used to quantify the radial diffusion effects and aid in a better understanding of this prevailing mechanism. This article is protected by copyright. All rights reserved.

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Harmonization of RBSP and Arase energetic electron measurements utilizing ESA radiation monitor data

Abstract Accurate measurements of trapped energetic electron fluxes are of major importance for the studies of the complex nature of radiation belts and the characterization of space radiation environment. The harmonization of measurements between different instruments increase the accuracy of scientific studies and the reliability of data-driven models that treat the specification of space radiation environment. An inter-calibration analysis of the energetic electron flux measurements of the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron-Proton Telescope (REPT) instruments on-board the Van Allen Probes (VAP) Mission versus the measurements of the Extremely High Energy Electron Experiment (XEP) unit on-board Arase satellite is presented. The performed analysis demonstrates a remarkable agreement between the majority of MagEIS and XEP measurements and suggests the re-scaling of MagEIS HIGH unit and of REPT measurements for the treatment of flux spectra discontinuities. The proposed adjustments were validated successfully using measurements from ESA Environmental Monitoring Unit (EMU) on-board GSAT0207 and the Standard Radiation Monitor (SREM) on-board INTEGRAL. The derived results lead to the harmonization of science-class experiments on-board VAP (2012-2019) and Arase (2017-) and propose the use of the datasets as reference in a series of space weather and space radiation environment developments.

Sandberg, I.; Jiggens, P.; Evans, H.; Papadimitriou, C.; Aminalragia–Giamini, S.; Katsavrias, Ch.; Boyd, A.; O’Brien, T.; Higashio, N.; Mitani, T.; Shinohara, I.; Miyoshi, Y.; Baker, D.; Daglis, I.;

Published by: Space Weather      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002692

Radiation belt; calibration; data harmonization; space radiation environment; energetic electrons; Van Allen Probes

Van Allen probe observations of disappearance, recovery and patchiness of plasmaspheric hiss following two consecutive interplanetary shocks: First results

Abstract We present, for the first time, a plasmaspheric hiss event observed by the Van Allen probes in response to two successive interplanetary shocks occurring within an interval of ∼2 hours on December 19, 2015. The first shock arrived at 16:16 UT and caused disappearance of hiss for ∼30 minutes. Combined effect of plasmapause crossing, significant Landau damping by suprathermal electrons and their gradual removal by magnetospheric compression led to the disappearance of hiss. Calculation of electron phase space density and linear wave growth rates showed that the shock did not change the growth rate of whistler waves within the core frequency range of plasmaspheric hiss (0.1 - 0.5 kHz) during this interval making conditions unfavorable for the generation of hiss. The recovery began at ∼16:45 UT which is attributed to an enhancement in local plasma instability initiated by the first shock-induced substorm and additional possible contribution from chorus waves. This time, the wave growth rate peaked within the core frequency range ( ∼350 Hz). The second shock arrived at 18:02 UT and generated patchy hiss persisting up to ∼19:00 UT. It is shown that an enhanced growth rate and additional contribution from shock-induced poloidal Pc5 mode (periodicity ∼240 sec) ULF waves resulted in the excitation of hiss waves during this period. The hiss wave amplitudes were found to be additionally modulated by background plasma density and fluctuating plasmapause location. The investigation highlights the important roles of interplanetary shocks, substorms, ULF waves and background plasma density in the variability of plasmaspheric hiss.

Chakraborty, S.; Chakrabarty, D.; Reeves, G.; Baker, D.; Claudepierre, S.; Breneman, A.; Hartley, D.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028873

Plasmaspheric Hiss; Van Allen Probe; Interplanetary shocks; substorms; Whistlers; ULF waves; Van Allen Probes

RBSP-ECT Combined Pitch Angle Resolved Electron Flux Data Product

Abstract We describe a new data product combining pitch angle resolved electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration s Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of pitch-angle-resolved spectra for the entire Van Allen Probes mission. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product offers researchers a consistent cross calibrated data set to explore the particle dynamics of the inner magnetosphere across a wide range of energies. This article is protected by copyright. All rights reserved.

Boyd, A.J.; Spence, H.E.; Reeves, G.D.; Funsten, H.O; Skoug, R.K.; Larsen, B.A.; Blake, J.B.; Fennell, J.F.; Claudepierre, S.G.; Baker, D.N.; Kanekal, S.K.; Jaynes, A.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028637

Van Allen Probes; Radiation belts; ECT; MAGEis; REPT; HOPE

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions were amplified by local anisotropic electron distributions, and their large-scale amplitudes were modulated by the plasma density. A novel observation of this event is that chorus waves at frequencies above QP emissions exhibit a strong correlation with QP emissions. Those chorus waves intensified when the QP emissions reach their peak frequency. This indicates that embryonic QP emissions may be critical for its own intensification as well as chorus waves under certain circumstances. The low-earth-orbit POES satellite observed enhanced energetic electron precipitation in conjunction with the Van Allen Probes, providing direct evidence that QP emissions precipitate energetic electrons into the atmosphere. This scenario is quantitatively confirmed by our quasilinear diffusion simulation results.

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

2020

Equatorial pitch angle distributions of 1 – 50 keV electrons in Earth s inner magnetosphere: an empirical model based on the Van Allen Probes observations

Using seven years of data from the HOPE instrument on the Van Allen Probes, equatorial pitch angle distributions (PADs) of 1 – 50 keV electrons in Earth s inner magnetosphere are investigated statistically. An empirical model of electron equatorial PADs as a function of radial distance, magnetic local time, geomagnetic activity, and electron energy is constructed using the method of Legendre polynomial fitting. Model results show that most equatorial PADs of 1 – 10s of keV electrons in Earth s inner magnetosphere are pancake PADs, and the lack of butterfly PADs is likely due to their relatively flat or positive flux radial gradients at higher altitudes. During geomagnetically quiet times, more anisotropic distributions of 1 – 10s of keV electrons at dayside than nightside are observed, which could be responsible for moderate chorus wave activities at dayside during quiet times as reported by previous studies. During active times, the anisotropy of 1 – 10s of keV electrons significantly enhances, consistent with the enhanced chorus wave activity during active times and suggesting the critical role of 1 – 10s of keV electrons in generating chorus waves in Earth s inner magnetosphere. Different enhanced anisotropy patterns of different energy electrons are also observed during active times: at R>∼4 RE, keV electrons are more anisotropic at dawn to noon, while 10s of keV electrons have larger anisotropy at midnight to dawn. These differences, combined with the statistical distribution of chorus waves shown in previous studies, suggest the differential roles of electrons with different energies in generating chorus waves with different properties. This article is protected by copyright. All rights reserved.

Zhao, H.; Friedel, R.; Chen, Y.; Baker, D.; Li, X.; Malaspina, D.; Larsen, B.; Skoug, R.; Funsten, H.; Reeves, G.; Boyd, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028322

Pitch angle distribution; energetic electrons; Earth s inner magnetosphere; Anisotropy; Chorus wave; statistical analysis; Van Allen Probes

Evolution of pitch angle distributions of relativistic electrons during geomagnetic storms: Van Allen Probes Observations

We present a study analyzing relativistic and ultra relativistic electron energization and the evolution of pitch angle distributions using data from the Van Allen Probes. We study the connection between energization and isotropization to determine if there is a coherence across storms and across energies. Pitch angle distributions are fit with a J0sinnθ function, and the variable ’n’ is characterized as the pitch angle index and tracked over time. Our results show that, consistently across all storms with ultra relativistic electron energization, electron distributions are most anisotropic within around a day of Dstmin and become more isotropic in the following week. Also, each consecutively higher energy channel is associated with higher anisotropy after storm main phase. Changes in the pitch angle index are reflected in each energy channel; when 1.8 MeV electron pitch angle distributions increase (or decrease) in pitch angle index, so do the other energy channels. We show that the peak anisotropies differ between CME- and CIR- driven storms and measure the relaxation rate as the anisotropy falls after the storm. The isotropization rate in pitch angle index for CME-driven storms is -0.15±0.02 day−1 at 1.8 MeV, -0.30±0.01 day−1 at 3.4 MeV, and -0.39±0.02 day−1 at 5.2 MeV. For CIR-driven storms, the isotropization rates are -0.10±0.01 day−1 for 1.8 MeV, -0.13±0.02 day−1 for 3.4 MeV, and -0.11±0.02 day−1 for 5.2 MeV. This study shows that there is a global coherence across energies and that storm type may play a role in the evolution of electron pitch angle distributions.

Greeley, Ashley; Kanekal, Shrikanth; Sibeck, David; Schiller, Quintin; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028335

pitch angle distributions; relativistic electrons; ultra relativistic electrons; Van Allen Probes; pitch angle distribution evolution; anisotropic electrons

The Impenetrable Barrier: Suppression of Chorus Wave Growth by VLF Transmitters

Rapid radiation belt recovery following storm time depletion involves local acceleration of multi-MeV electrons in nonlinear interactions with VLF chorus waves. Previous studies of an apparent impenetrable barrier at L ~ 2.8 focused on diffusion and precipitation loss mechanisms for an explanation of the sharp reduction of multi-MeV electron fluxes earthward of L ~ 3. Van Allen Probes observations for cases when the plasmasphere is contracted earthward of L ~ 3 indicate that strong coherent signals from VLF transmitters can play significant roles in the suppression of nonlinear chorus wave growth earthward of L ~ 3. As a result, local nonlinear acceleration of hundreds of keV electrons to MeV energies does not occur in this region. During the recovery of the outer radiation belt when the plasmasphere is significantly contracted, the suppression of chorus wave growth and local acceleration by the action of the transmitter waves at the outer edge of the VLF bubble contributes to the sharp inner edge of the new MeV electron population and the formation of the impenetrable barrier at L ~ 2.8.

Foster, John; Erickson, Philip; Omura, Yoshiharu; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027913

Radiation belt; Plasmapause; VLF transmitters; wave-particle interactions; Electron acceleration; nonlinear VLF chorus; Van Allen Probes

New Insights From Long-Term Measurements of Inner Belt Protons (10s of MeV) by SAMPEX, POES, Van Allen Probes, and Simulation Results

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission provided long-term measurements of 10s of megaelectron volt (MeV) inner belt (L < 2) protons (1992–2009) as did the Polar-orbiting Operational Environmental Satellite-18 (POES-18, 2005 to present). These long-term measurements at low-Earth orbit (LEO) showed clear solar cycle variations which anticorrelate with sunspot number. However, the magnitude of the variation is much greater than the solar cycle variation of galactic cosmic rays (>GeV) that are regarded as a source of these trapped protons. Furthermore, the proton fluxes and their variations sensitively depend on the altitude above the South Atlantic Anomaly (SAA) region. With respect to protons (>36 MeV) mirroring near the magnetic equator, both POES measurements and simulations show no obvious solar cycle variations at L > 1.2. This is also confirmed by recent measurements from the Van Allen Probes (2012–2019), but there are clear solar cycle variations and a strong spatial gradient of the proton flux below L = 1.2. A direct comparison between measurements and simulations leads to the conclusion that energy loss of trapped protons due to collisions with free and bound electrons in the ionosphere and atmosphere is the dominant mechanism for the strong spatial gradient and solar cycle variation of the inner belt protons. This fact is also key of importance for spacecraft and instrument design and operation in near-Earth space.

Li, Xinlin; Xiang, Zheng; Zhang, Kun; Khoo, Lengying; Zhao, Hong; Baker, Daniel; Temerin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028198

Inner radiation belt; Inner Belt Proton; Solar cycle variation; Cosmic rays; neutron monitor; Low Earth Orbit satellite; Van Allen Probes

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked (L = 3.5 and 4.5, respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2–3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram shows novel distributions differing from both “S-shaped” and “V-shaped” spectrograms reported previously. Such peculiar distribution also illustrates the energy-dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at L ∼ 3.5 also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

Solar Energetic Proton Access to the Near-Equatorial Inner Magnetosphere

In this study we examine the ability of protons of solar origin to access the near-equatorial inner magnetosphere. Here we examine four distinct solar proton events from 20–200 MeV, concurrent with both quiet time and storm time conditions using proton data from the ACE satellite in the solar wind upstream of Earth and data from the Relativistic Electron Proton Telescope (REPT) instrument aboard Van Allen Probes. We examine the direct flux correspondence between interplanetary space and the inner magnetosphere. Small substructures in interplanetary space are observable in the REPT flux profiles, which can penetrate down to L values of ≤4. Furthermore, there are orbit-to-orbit variations in the west-to-east anisotropic flux ratios. The anisotropic flux ratios are used as a proxy for cutoff energies and display cutoff variations with L shell and energy. The dependence of the anisotropic flux ratio on Dst values is shown. The results paint a picture of highly dynamic spatial and temporal proton cutoff rigidities in the near-equatorial inner magnetosphere.

Filwett, Rachael; Jaynes, Allison; Baker, Daniel; Kanekal, Shrikanth; Kress, Brian; Blake, Bern;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027584

Van Allen Probes

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events occurred between 1 October 2012 and 31 December 2017 and were identified using Geostationary Operational Environmental Satellite (GOES) 15 >2 MeV fluxes at GEO, which we have used to characterize the radial response of the radiation belt, by comparing to fluxes measured by the Van Allen probes Energetic Particle, Composition and Thermal Plasma Suite Relativistic Electron-Proton Telescope (ECT-REPT) between 2.55.0 and generally similar for L>4.5. Post-enhancement maximum fluxes show a remarkable correlation for all L>4.0 although the magnitude of the pre-existing fluxes on the outer belt plays a significant role and makes the ratio of pre-enhancement to post-enhancement fluxes less predictable in the region 4.0

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationship. For this study, we determine the standoff distance of the location of maximum electron flux of the outer belt MeV electrons from the plasmapause following rapid enhancement events. We find that the location of the outer radiation belt based on maximum electron flux is consistently outside the plasmapause, with a peak radial standoff distance of ∆L ~ 1. We discuss the implications this result has for acceleration mechanisms.

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

2019

Rapid Precipitation of Relativistic Electron by EMIC Rising-Tone Emissions Observed by the Van Allen Probes

On 23 February 2014, Van Allen Probes sensors observed quite strong electromagnetic ion cyclotron (EMIC) waves in the outer dayside magnetosphere. The maximum amplitude was more than 14 nT, comparable to 7\% of the magnitude of the ambient magnetic field. The EMIC waves consisted of a series of coherent rising tone emissions. Rising tones are excited sporadically by energetic protons. At the same time, the probes detected drastic fluctuations in fluxes of MeV electrons. It was found that the electron fluxes decreased by more than 30\% during the 1 min following the observation of each EMIC rising tone emissions. Furthermore, it is concluded that the flux reduction is a nonadiabatic (irreversible) process since holes in the particle flux levels appear as drift echoes with energy dispersion. We examine the process of electron pitch angle scattering by nonlinear wave trapping due to anomalous cyclotron resonance with EMIC rising tone emissions. The energy range of precipitated electrons agrees with the presumed energy for the threshold amplitude for nonlinear wave trapping. This is the first report of rapid precipitation (<1 min) of relativistic electrons by EMIC rising tone emissions and their drift echoes in time observed by spacecraft.

Nakamura, S.; Omura, Y.; Kletzing, C.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: May-08-2020

YEAR: 2019     DOI: 10.1029/2019JA026772

EMIC waves; Magnetosphere; microburst; nonlinear; Radiation belt; Van Allen Probes; Wave-particle interaction

Evolution of Pitch Angle-Distributed Megaelectron Volt Electrons During Each Phase of the Geomagnetic Storm

Using Relativistic Electron Proton Telescope measurements onboard Van Allen Probes, the evolution of electron pitch angle distributions (PADs) during the different phases of magnetic storms is studied. Electron fluxes are sorted in terms of storm phase, urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0001 value, energy, and magnetic local time (MLT) sectors for 55 magnetic storms from October 2012 through May 2017. To understand the potential mechanisms for the evolution of electron PADs, we fit PADs to a sinusoidal function urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0002, where urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0003 is the equatorial pitch angle and n is a real number. The major inferences from our study are (i) at L urn:x-wiley:jgra:media:jgra55457:jgra55457-math-00045, the prestorm electron PADs are nearly isotropic (n urn:x-wiley:jgra:media:jgra55457:jgra55457-math-00050), which evolves differently in different MLT sectors during the main phase subsequently recovering back to nearly isotropic distribution type during the storm recovery phase; (ii) for urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0006 urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0007 3.4 MeV, the main phase electron PADs become more pancake like on the dayside with high n values (>3), while it becomes more flattop to butterfly like on the nightside, (iii) at L = 5, magnetic field strength during the storm main phase enhances during the daytime and decreases during the nighttime. (iv) Conversely, at L urn:x-wiley:jgra:media:jgra55457:jgra55457-math-00083, the electron PADs neither respond significantly to the different phase of the magnetic storm nor reflect any MLT dependence. (v) Main phase, electron fluxes with urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0009 <4.2 MeV shows a persistent 90\textdegree maximum PAD with n ranging between 0 and 2, while for urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0010 urn:x-wiley:jgra:media:jgra55457:jgra55457-math-0011 4.2 MeV the distribution appears flattop and butterfly like. Our study shows that the relativistic electron PADs depend upon the geomagnetic storm phase and possible underlying mechanisms are discussed in this paper.

Pandya, Megha; Bhaskara, Veenadhari; Ebihara, Yusuke; Kanekal, Shrikanth; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA027086

electron flux; inner magnetosphere; Pitch angle distribution; Radiation belts; Van Allen Probes

Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES-15 Measurements: 2012-2018

Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027331

energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes

On the Acceleration Mechanism of Ultrarelativistic Electrons in the Center of the Outer Radiation Belt: A Statistical Study

Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8\textendash7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy-dependent acceleration of ultrarelativistic electrons in the outer belt. Especially, for electrons with very high energies (~7 MeV), prevalent positive phase space density radial gradients support inward radial diffusion being responsible for electron acceleration in the center of the outer belt (L*~3\textendash5) during most enhancement events in the Van Allen Probes era. We propose a two-step acceleration process to explain the acceleration of ~7 MeV electrons in the outer belt: intense and sustained chorus waves locally energize core electron populations to ultrarelativistic energies at high L region beyond the Van Allen Probes\textquoteright apogee, followed by inward radial diffusion which further energizes these populations to even higher energies. Statistical results of chorus wave activity inferred from POES precipitating electron measurements as well as core electron populations observed by the Van Allen Probes and GOES support this hypothesis.

Zhao, H.; Baker, D.N.; Li, X.; Malaspina, D.M.; Jaynes, A.N.; Kanekal, S.G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA027111

Acceleration mechanism; Inward radial diffusion; Local Acceleration; Phase space density; Radiation belts; ultrarelativistic electrons; Van Allen Probes

RBSP-ECT Combined Spin-Averaged Electron Flux Data Product

We describe a new data product combining the spin-averaged electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration\textquoterights Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of spectra for September 2013 to the present. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product provides additional utility to the ECT data and offers a consistent cross calibrated data set for researchers interested in examining the dynamics of the inner magnetosphere across a wide range of energies.

Boyd, A.; Reeves, G.; Spence, H.; Funsten, H.; Larsen, B.; Skoug, R.; Blake, J.; Fennell, J.; Claudepierre, S.; Baker, D.; Kanekal, S.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026733

ECT; HOPE; MAGEis; Radiation belts; REPT; Van Allen Probes

Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations

Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron-Proton Telescope (REPT) instrument on board Van-Allen Probes from Oct-2012 to May-2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L-values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70\% cases the electron flux remains stable, while at L = 5, for ~82\% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53\% of the CIR storms and 30\% of the CME storms show electron flux increase. (iii) At a given L-value, the tendency for the electron flux variation diminishes with the increasing energies for both categories of storms. (iv) In case of CIR driven storms, the electron flux changes are associated with changes in Vsw and Sym-H. (v) At L ~ 3, CME storms show increased electron flux, while at L ~ 5, CIR storms are responsible for the electron flux enhancements. (vi) During CME and CIR driven storms, distinct electron flux variations are observed at L = 3 and L = 5.

Pandya, Megha; Veenadhari, B.; Ebihara, Y.; Kanekal, S.G.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026771

electron flux; innermagnetosphere; Magnetic Storms; Radiation belt; solar wind driver; Van Allen Probes

Characteristics of high energy proton responses to geomagnetic activities in the inner radiation belt observed by the RBSP satellite

High energy trapped particles in the radiation belts constitute potential threats to the functionality of satellites as they enter into those regions. In the inner radiation belt, the characteristics of high-energy (>20MeV) protons variations during geomagnetic activity times have been studied by implementing four-year (2013-2016) observations of the Van Allen probes. An empirical formula has been used to remove the satellite orbit effect, by which proton fluxes have been normalized to the geomagnetic equator. Case studies show that the region of L<1.7 is relatively stable, while L>1.7 is more dynamic and the most significant variation of proton fluxes occurs at L=2.0. The four-year survey at L=2.0 indicates that for every geomagnetic storm, sharp descent in proton fluxes is accompanied by the corresponding depression of SYM-H index, with a one-to-one correspondence, regardless of the storm intensity. Proton fluxes dropouts are synchronous with SYM-H reduction with similar short timescales. Our observational results reveal that high-energy protons in the inner radiation belt are very dynamic, especially for the outer zone of the inner belt, which is beyond our previous knowledge.

Xu, Jiyao; He, Zhaohai; Baker, D.N.; Roth, Ilan; Wang, C.; Kanekal, S.G.; Jaynes, A.N.; Liu, Xiao;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA026205

geomagnetic activities; high energy proton; Inner radiation belt; one-to-one correspondence; prompt responses; RBSP satellite; Van Allen Probes

Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements

Based on the measurements of ~100-keV to 10-MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump-on-tail (BOT). The exponential spectra are generally dominant in the outer radiation belt outside the plasmasphere, power law spectra usually appear at high L-shells during injections of lower-energy electrons, and BOT spectra commonly dominate inside the plasmasphere at L>2.5 during relatively quiet times. The main features of three types of energy spectra have also been revealed. Specifically, for the BOT energy spectrum, the energy of local flux maximum usually ranges from approximately hundreds of keV to several MeV and the energy of local flux minimum varies from ~100 keV to ~MeV, both increasing as L-shell decreases, confirming the plasmaspheric hiss wave scattering to be the main mechanism forming the BOT energy spectra. Statistical results using 4-year observations from the Van Allen Probes on the relation between energy spectra and plasmapause location also show that the plasmasphere plays a critical role in shaping radiation belt electron energy spectrum: the peak location of BOT energy spectra is ~1 L-shell inside the minimum plasmapause, where BOT energy spectra mostly form in ~1\textendash2 days as a result of hiss wave scattering.

Zhao, H.; Johnston, W.R.; Baker, D.N.; Li, X.; Ni, B.; Jaynes, A.N.; Kanekal, S.G.; Blake, J.B.; Claudepierre, S.G.; Reeves, G.D.; Boyd, A.J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026697

Bump-on-tail energy spectrum; Energy spectrum; Exponential energy spectrum; Plasmapause; Power law energy spectrum; radiation belt electrons; Van Allen Probes

Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler-Mode Chorus Emissions

Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus waves observed by the Van Allen Probes, we have performed detailed analyses of the wave form data based on theoretical framework of nonlinear trapping of resonant electrons. We compare the efficiencies of accelerations by cyclotron and Landau resonances. We find significant acceleration can take place both in Landau and cyclotron resonances. What controls the dynamics of relativistic electrons in the Landau resonance is the perpendicular field components rather than the parallel electric field of the oblique chorus wave. In evaluating the efficiency of nonlinear trapping, we have taken into account variation of the wave trapping potential structure controlled by the inhomogeneity factors.

Omura, Yoshiharu; Hsieh, Yi-Kai; Foster, John; Erickson, Philip; Kletzing, Craig; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026374

inner magnetosphere; nonlinear process; Radiation belts; relativistic electrons; Van Allen Probes; wave particle interaction; whistler-mode chorus

The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements

Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8- to 7.7-MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense storms with/without flux enhancements of different energy electrons are conducted. The results suggest that the storms with higher solar wind speed, sustained southward interplanetary magnetic field Bz, lower solar wind number density, higher solar wind Ey, and elevated and sustained substorm activity are more likely to cause ultrarelativistic electron flux enhancements in the outer belt. Comparing results of different energy electrons, the solar wind speed and AE index are the two parameters mostly correlated with the energy-dependent acceleration of ultrarelativistic electrons: Storms with higher solar wind speed and elevated and sustained substorm activity are more likely to cause flux enhancement of ultrarelativistic electrons with higher energies. This suggests the important roles of inward radial diffusion as well as the source and seed populations provided by substorms on the energy-dependent acceleration of ultrarelativistic electrons.

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026257

Acceleration mechanism; Geomagnetic storms; Radiation belt; solar wind conditions; ultrarelativistic electrons; Van Allen Probes

Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss

In addition to clarifying morphological structures of the Earth\textquoterights radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6-year period 1 September 2012 to 1 September 2018. We focus on data about the relativistic and ultrarelativistic electrons (E>=5 MeV) measured by the Relativistic Electron-Proton Telescope sensors on board the Van Allen Probes spacecraft. This work portrays the radiation belt acceleration, transport, and loss characteristics over a wide range of geomagnetic events. We emphasize features seen repeatedly in the data (three-belt structures, \textquotedblleftimpenetrable\textquotedblright barrier properties, and radial diffusion signatures) in the context of acceleration and loss mechanisms. We especially highlight solar wind forcing of the ultrarelativistic electron populations and extended periods when such electrons were absent. The analysis includes new display tools showing spatial features of the mission-long time variability of the outer Van Allen belt emphasizing the remarkable dynamics of the system.

Baker, Daniel; Hoxie, Vaughn; Zhao, Hong; Jaynes, Allison; Kanekal, Shri; Li, Xinlin; Elkington, Scot;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026259

convection electric field; Energetic particle deep penetration; Low L Region; Radiation belts; Van Allen Probes

Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections

We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15\textendash22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock-compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substructures and their conditions that influenced the Earth\textquoterights magnetosphere. In particular, the main depletions occurred during a high-dynamic pressure sheath and shock-compressed southward ejecta fields. These structures compressed/eroded the magnetopause close to geostationary orbit and induced intense and diverse wave activity in the inner magnetosphere (ULF Pc5, electromagnetic ion cyclotron, and hiss) facilitating both effective magnetopause shadowing and precipitation losses. Seed and source electrons in turn experienced stronger variations throughout the studied interval. The core fluxes recovered during the last ICME that made a glancing blow to Earth. This period was characterized by a concurrent lack of losses and sustained acceleration by chorus and Pc5 waves. Our study highlights that the seemingly complex behavior of the outer belt during interacting ICMEs can be understood by the knowledge of electron dynamics during different substructures.

Kilpua, E.; Turner, D.; Jaynes, A.; Hietala, H.; Koskinen, H.; Osmane, A.; Palmroth, M.; Pulkkinen, T.; Vainio, R.; Baker, D.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026238

interplanetary coronal mass ejections; magnetospheric storm; magnetospheric waves; Outer Belt; Radiation belts; Solar wind; Van Allen Probes

Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014

Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground and space-based observational data, global magnetohydrodynamic (MHD) simulations, and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. MHD simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfv\ en modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by Phase Space Density (PhSD) calculations for this global recovery period.

Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026184

alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes

Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright

Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1038/nphys4351

Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

2018

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM-H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases, ranging from days at E = 1.8 MeV up to months at E = 6.3 MeV suggesting that remnant belts are extremely persistent.

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

Fast diffusion of ultra-relativistic electrons in the outer radiation belt: 17 March 2015 storm event

Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event-specific and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultra-relativistic electrons up to \~8 MeV are accelerated in the absence of intense higher-frequency plasma waves, indicating an acceleration event in the core of the outer belt driven primarily or entirely by ULF wave-driven diffusion. We examine this fast diffusion rate along with derived radial diffusion coefficients using particle and fields instruments on the Van Allen Probes spacecraft mission.

Jaynes, A.; Ali, A.; Elkington, S.; Malaspina, D.; Baker, D.; Li, X.; Kanekal, S.; Henderson, M.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079786

Magnetosphere; radial diffusion; Radiation belts; ULF waves; Van Allen Probes

Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves

A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfv\ enic fluctuations and multi-timescale modulation of enhanced atmospheric X-ray bremsstrahlung emission. The properties of the Alfv\ enic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro-radii scale field structures. It is shown that this scattering may lead to the transport of electrons into the loss cone over an energy range from hundreds of keV to multi-MeV on diffusive timescales on the order of hours. This process may account for modulation of atmospheric X-ray fluxes observed from balloons and constitute a significant loss process for the radiation belts.

Chaston, C.; Bonnell, J.; Halford, A.; Reeves, G.; Baker, D.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079527

Alfven waves; drift-bounce resonance; energetic particles; Geomagnetic storms; pitch-angle scattering; Radiation belts; Van Allen Probes

EMIC wave events during the four GEM QARBM challenge intervals

This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near-equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the REPT and MagEIS instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~ 4.0. In three other cases identifiable smaller and more short-lived dropouts appeared, and in five other cases these waves evidently had little or no effect.

Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018JA025505

Van Allen Probes

The Acceleration of Ultrarelativistic Electrons During a Small to Moderate Storm of 21 April 2017

The ultrarelativistic electrons (E > ~3 MeV) in the outer radiation belt received limited attention in the past due to sparse measurements. Nowadays, the Van Allen Probes measurements of ultrarelativistic electrons with high energy resolution provide an unprecedented opportunity to study the dynamics of this population. In this study, using data from the Van Allen Probes, we report significant flux enhancements of ultrarelativistic electrons with energies up to 7.7 MeV during a small to moderate geomagnetic storm. The underlying physical mechanisms are investigated by analyzing and simulating the evolution of electron phase space density. The results suggest that during this storm, the acceleration mechanism for ultrarelativistic electrons in the outer belt is energy-dependent: local acceleration plays the most important role in the flux enhancements of ~3\textendash5 MeV electrons, while inward radial diffusion is the main acceleration mechanism for ~7 MeV electrons at the center of the outer radiation belt.

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

Published by: Geophysical Research Letters      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018GL078582

Energy-dependent acceleration; Geomagnetic storms; Inward radial diffusion; Local Acceleration; Radiation belts; Ultra-relativistic electrons; Van Allen Probes

Rapid Enhancements of the Seed Populations in the Heart of the Earth\textquoterights Outer Radiation Belt: A Multicase Study

To better understand rapid enhancements of the seed populations (hundreds of keV electrons) in the heart of the Earth\textquoterights outer radiation belt (L* ~ 3.5\textendash5.0) during different geomagnetic activities, we investigate three enhancement events measured by Van Allen Probes in detail. Observations of the fluxes and the pitch angle distributions of energetic electrons are analyzed to determine rapid enhancements of the seed populations. Our study shows that three specified processes associated with substorm electron injections can lead to rapid enhancements of the seed populations, and the electron energy increases up to 342 keV. In the first process, substorm electron injections accompanied by the transient and intense substorm electric fields can directly lead to rapid enhancements of the seed populations in the heart of the outer radiation belt. In the second process, the substorm injected electrons are first trapped in the outer radiation belt and subsequently transported into L* < 4.5 by the convection electric field. In the third process, the lower energy electrons are first injected at L* ~ 5.3 and then undergo drift resonance with ultralow-frequency waves. These accelerated electrons by ultralow-frequency waves are further transported into L* < 4.5 due to the convection electric field. This process is consistent with the radial diffusion. Our results suggest that these specified processes are important for understanding the dynamics of the seed populations in the heart of the outer radiation belt.

Tang, C.; Xie, X.; Ni, B.; Su, Z.; Reeves, G.; Zhang, J.-C.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.; Wygant, J.; Dai, G;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2017JA025142

enhanced convection; Substorm Injections; the outer radiation belt; the seed population; ULF waves; Van Allen Probes

What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era

We survey radiation belt enhancement events during the Van Allen Probes era to determine what mechanism is the dominant cause of enhancements and where it is most effective. Two primary mechanisms have been proposed: (1) betatron/Fermi acceleration due to the Earthward radial transport of electrons which produces monotonic gradients in phase space density (PSD) and (2) \textquotedblleftlocal acceleration" due to gyro/Landau resonant interaction with electromagnetic waves which produces radially localized, growing peaks in PSD. To differentiate between these processes, we examine radial profiles of PSD in adiabatic coordinates using data from the Van Allen Probes and THEMIS satellites for 80 outer belt enhancement events from October 2012-April 2017 This study shows that local acceleration is the dominant acceleration mechanism for MeV electrons in the outer belt, with 87\% of the enhancement events exhibiting growing peaks. The strong correlation of the location of these with geomagnetic activity further supports this conclusion.

Boyd, A.J.; Turner, D.L.; Reeves, G.D.; Spence, H.E.; Baker, D.N.; Blake, J.B.;

Published by: Geophysical Research Letters      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018GL077699

Local Acceleration; Phase space density; Radiation belt; THEMIS; Van Allen Probes

An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements

Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L-shell (L=1 \textendash 6), magnetic local time (MLT), electron energy (~30 keV \textendash 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV electrons, model results show more significant day-night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90\textdegree pitch angle (PA) and lower fluxes at lower PAs for higher energy electrons and during active times are also present, which could be due to EMIC wave scattering. For 100s of keV electrons, cap PADs are generally present in the slot region during quiet times and their energy-dependent features are consistent with hiss wave scattering, while during active times, cap PADs are less significant especially at outer part of slot region, which could be due to the complex energizing and transport processes. 90\textdegree-minimum PADs are persistently present in the inner belt and appear in the slot region during active times, and minima at 90\textdegree PA are more significant for electrons with higher energies, which could be a critical evidence in identifying the underlying physical processes responsible for the formation of 90\textdegree-minimum PADs.

Zhao, H.; Friedel, R.; Chen, Y.; Reeves, G.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.; Claudepierre, S.; Fennell, J.; Blake, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2018JA025277

Empirical Model; Geomagnetic storms; inner belt and slot region; Pitch angle distribution; radiation belt electrons; Van Allen Probes

The global statistical response of the outer radiation belt during geomagnetic storms

Using the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non-adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm-time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) dependent behaviour in the seed (150 MeV/G), relativistic (1000 MeV/G), and ultra-relativistic (4000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, whilst the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ-dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

Murphy, Kyle; Watt, C.; Mann, Ian; Rae, Jonathan; Sibeck, David; Boyd, A.; Forsyth, C.; Turner, D.; Claudepierre, S.; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 04/2018

YEAR: 2018     DOI: 10.1002/2017GL076674

Geomagnetic storms; magnetospheric dynamics; Radiation belts; Solar Wind-Magnetosphere Coupling; statistical analysis; Van Allen Probes

Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events

We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17\textendash18 March 2013 and non\textendashstorm time of 19\textendash20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17\textendash18 March 2013, the SYM-H minimum reached -130 nT, intense chorus waves (peak Bw ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV to several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19\textendash20 September 2013, the SYM-H remained higher than -30 nT, modestly intense chorus waves (peak Bw ~80 pT) occurred at L > 5.5, and electron fluxes at energies up to 3 MeV increased by a factor of ~5 at L > 5.5. The two electron flux enhancement events were simulated using the available wave distribution and diffusion coefficients from the GEM focus group Quantitative Assessment of Radiation Belt Modeling. By comparing the individual roles of local electron heating and radial transport, our simulation indicates that resonant interaction with chorus waves is the dominant process that accounts for the electron flux enhancement during the storm time event particularly near the flux peak locations, while radial diffusion by ultralow-frequency waves plays a dominant role in the enhancement during the non\textendashstorm time event. Incorporation of both processes reasonably reproduces the observed location and magnitude of electron flux enhancement.

Ma, Q.; Li, W.; Bortnik, J.; Thorne, R.; Chu, X.; Ozeke, L.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2017JA025114

electron accelerationl whistler mode waves; radial diffusion; radiation belt simulation; Van Allen Probes; Van Allen Probes observation

Radiation belt \textquotedblleftdropouts\textquotedblright and drift-bounce resonances in broadband electromagnetic waves

Observations during the main phase of geomagnetic storms reveal an anti-correlation between the occurrence of broadband low frequency electromagnetic waves and outer radiation belt electron flux. We show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on timescales less than a drift orbit. This process may provide outward transport sufficient to account for electron \textquotedblleftdropouts\textquotedblright during storm main phase and more generally modulate the outer radiation belt during geomagnetic storms.

Chaston, C.; Bonnell, J.; Wygant, J.; Reeves, G.; Baker, D.; Melrose, D.;

Published by: Geophysical Research Letters      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017GL076362

Alfven waves; Geomagnetic storms; Radial Transport; Radiation belts; Van Allen Probes

Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

An empirical model of the proton radiation belt is constructed from data taken during 2013\textendash2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18\textendash600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

Selesnick, R.; Baker, D.; Kanekal, S.; Hoxie, V.; Li, X.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024661

data; protons; Radiation belt; Van Allen Probes

2017

Van Allen Probes measurements of energetic particle deep penetration into the low L region (L<4) during the storm on 8 April 2016

Using measurements from the Van Allen Probes, a penetration event of 10s \textendash 100s of keV electrons and 10s of keV protons into the low L-shells (L<4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT-asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convection during geomagnetic active times to be the cause of energetic proton deep penetration during this event. The observed MLT difference of 10s \textendash 100s of keV electron penetration is completely different from 10s of keV protons and cannot be well explained by inward radial diffusion, convection of plasma sheet electrons, or transport of trapped electrons by enhanced convection electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L-shells, should be MLT-localized.

Zhao, H.; Baker, D.; Califf, S.; Li, X.; Jaynes, A.; Leonard, T.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017JA024558

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32\textdegree < MLat < -15\textdegree), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLat ~ -31\textdegree). Most of the elements had \textquotedbllefthook\textquotedblright like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30\textdegree from the direction anti-parallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm

There was a geomagnetic storm on 6\textendash8 March 2016, in which Van Allen Probes A and B separated by \~2.5 h measured increase of relativistic electrons with energies \~ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measured time scale of the electron increase is inferred to be consistent with this nonlinear theory.

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Alm, L.; Farrugia, C.; Kurth, W.; Baker, D.; Blake, J.; Funsten, H.; Reeves, G.; Ergun, R.; Khotyaintsev, Yu.; Lindqvist, P.-A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024540

chorus waves; Geomagnetic storm; relativistic electrons; Van Allen Probes

On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations

Using Van Allen Probes ECT-REPT observations we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion and no change in flux values depends strongly on L and energy. Enhancement events are more common for \~ 2 MeV electrons at L \~ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no change events are more frequent at L < 3.5 for E\~ 3 MeV particles. Moreover, for L > 4.5 the probability of enhancement, depletion or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at Geosynchronous orbit may be used as a proxy to monitor E>=1.8 MeV electrons in the outer belt.

Moya, Pablo.; Pinto, \; Sibeck, David; Kanekal, Shrikanth; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024735

Geomagnetic storms; Radiation belts; relativistic electrons; Van Allen Probes

Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes

This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at < 600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy < 60 keV and enhanced whistler-mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L-shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger, ion and electron injection did not penetrate to L < 6.6, but several of the smaller, electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron vs. ion injections, this event presents challenges to the current conceptual models of energetic particle injections.

Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024554

energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions

Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region

We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp \textquotelefttop-hat\textquoteright shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024452

Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere

Rapid loss of radiation belt relativistic electrons by EMIC waves

How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth\textquoterights outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the prediction of radial loss theory. The local loss at low L-shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L-shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region was able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.

Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024169

electron loss; EMIC waves; pitch angle scattering; radial diffusion; Radiation belts; Van Allen Probes; Wave-particle interaction

Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes

To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. The evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.

Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024487

EMIC wave; last closed drift shell; magnetopause shadowing; Phase space density; radiation belt dropout; Van Allen Probes

Radial transport of radiation belt electrons in kinetic field-line resonances

A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfv\ en eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport of the order of hours in storm-time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular to the geomagnetic field. The correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggest they may modulate the outer radiation belt.

Chaston, C.; Bonnell, J.; Wygant, J.; Reeves, G.; Baker, D.; Melrose, D.; Cairns, Iver.;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL074587

Alfven waves; Diffusion; field line resonances; Radiation belts; Transport; Van Allen Probes



  1      2      3      4