• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 5 entries in the Bibliography.

Showing entries from 1 through 5


A comparative study on the distributions of incoherent and coherent plasmaspheric hiss

Abstract We perform a comparative study on the distributions of incoherent and coherent plasmaspheric hiss, based on the Van Allen Probe data. The statistics show that incoherent hiss ( ∼10–20 pT) is widely distributed in dayside plasmasphere, with peak frequencies below 500 Hz; intense coherent hiss (amplitudes up to 80 pT) occurs in outer plasmasphere of L > 4 (L denotes the L-shell.), whose frequency increases with ambient magnetic field significantly. The Poynting flux analysis indicates that incoherent hiss generally propagates omni-directionally inside the plasmasphere, with features of external sources; the coherent hiss propagates away from the equatorial region in outer plasmasphere and has a reversed direction in inner plasmasphere, indicating two different wave sources by local generation and ducted lightning generated whistler (LGW) respectively. This comparative study helps us to better understand the origination of plasmaspheric hiss. This article is protected by copyright. All rights reserved.

He, Zhaoguo; Yu, Jiang; Li, Kun; Liu, Nigang; Chen, Zewen; Cui, Jun;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI:

Van Allen Probes


Precipitation Loss of Radiation Belt Electrons by Two-Band Plasmaspheric Hiss Waves

A two-band plasmaspheric hiss consisting of a low-frequency band (normal hiss with the frequency below 2 kHz) and a high-frequency band (locally generated hiss with the frequency up to 10 kHz) was observed on 6 January 2014 by the Van Allen Probes (He et al., 2019, The electron scattering effect driven by this kind of two-band plasmaspheric hiss is evaluated by the quasi-linear diffusion simulation for the first time. Realistic wave characteristic parameters of the two-band plasmaspheric hiss from statistics are adopted for driving our simulation. The pitch angle diffusion rates of the low-frequency band hiss present a “gap” with minimum magnitude at pitch angle αe ∼ 70°, a condition not favoring the transport of large pitch angle electrons toward the loss cone. However, the diffusion rates of the high-frequency band hiss have peak values at αe ∼ 70°, filling up for the “gap” of the low-frequency hiss diffusion rates. The realistic wave-driven electron PSD evolutions demonstrate that the collaborated effect of the low-frequency band and high-frequency band hiss can cause significant precipitation losses of energetic electrons of tens to several hundred keV within 2 days.

He, Zhaoguo; Yan, Qi; Zhang, Xiaoping; Yu, Jiang; Ma, Yonghui; Cao, Yong; Cui, Jun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI:

two-band hiss; radiation belt electron; loss; Van Allen Probes

Statistical Study on Locally Generated High-Frequency Plasmaspheric Hiss and Its Effect on Suprathermal Electrons: Van Allen Probes Observation and Quasi-linear Simulation

The local generation of high-frequency plasmaspheric hiss has recently been reported by a case study (He et al., 2019, In this research, we perform statistics of global distributions of the locally generated high-frequency plasmaspheric hiss (LHFPH) for different levels of substorm activity, using 6-year observational data from Van Allen Probes. The statistics find that the LHFPH amplitude presents a strong magnetic local time (MLT) asymmetry and highly depends on substorm activity, and intense LHFPHs occur from predawn to dusk side and can penetrate into inner plasmasphere of L ∼ 3 during AE > 300 nT. The statistical LHFPH spectrum shows that its frequency increases with the ambient magnetic field, with peaked wave powers between 0.1 and 0.5 fce. Based on the statistical properties of LHFPH, we evaluate the electron diffusion coefficients using quasi-linear theory. Those results suggest that electron pitch angle scattering driven by LHFPH could be a potential mechanism for the precipitation loss of suprathermal electrons of 0.1 keV to tens of keV, which can impact the ionization and chemical changes in the upper atmosphere.

He, Zhaoguo; Yu, Jiang; Chen, Lunjin; Xia, Zhiyang; Wang, Wenrui; Li, Kun; Cui, Jun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI:

Van Allen Probes

Electron Diffusion by Coexisting Plasmaspheric Hiss and Chorus Waves: Multisatellite Observations and Simulations

We report a rare event of intense plasmaspheric hiss and chorus waves simultaneously observed at the same L shell but different magnetic local times by Van Allen Probes and Magnetospheric Multiscale. Based on the measured waves and electron distributions, we calculate the bounce-averaged diffusion coefficients and subsequently simulate the temporal evolution of electron distributions. The simulations show that the dynamics of tens to hundreds of keV electrons are jointly controlled by hiss and chorus. The dynamics of MeV electrons are dominantly controlled by hiss near the loss cone but by chorus at intermediate to large pitch angles. The simulated electron distributions driven by combined diffusion can reproduce the majority of the observations. Our results provide a direct observational evidence that hiss and chorus can simultaneously occur at the same electron drifting shells due to the irregular plasmasphere and highlight the importance of their combined effect on electron dynamics.

Yu, J.; Wang, J.; Li, L; Cui, J.; Cao, J.; He, Z.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI:

electron diffusion; Plasmaspheric Hiss; chorus waves; Van Allen Probes; MMS


Effect of Low-Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere

In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly-like electron pitch angle distributions and the emission of low-harmonic (LH) fast magnetosonic (MS) waves inside the high-density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly-like distributions for both events (near-equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low-energy electrons (<~150 keV) show butterfly-like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different-energy electrons through the bounce resonance, Landau resonance, and transit time scattering. By performing the Fokker-Planck diffusion simulations, we demonstrate that the bounce resonance with the LH MS waves mainly leads to the butterfly pitch angle distribution of MeV electrons, whereas the Landau resonance and transit time scattering mainly affect energetic electrons in the high-density region.

Yu, J.; Li, L; Cui, J.; Cao, J.; Wang, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA026328

bounce resonance; Electron acceleration; Landau resonance; magnetosonic waves; transit-time scattering; Van Allen Probes