Bibliography
Notice:

Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2021 
Energetic electron detection packages on board Chinese navigation satellites in MEO Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole mediumenergy electron spectrometer (MES), a highenergy electron detector (HED) based on ΔEE telescope technology, and a deep dielectric charging monitor (DDCM). The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30° field of view (FOV). The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30° coneangle FOV. The ground test and calibration results indicate that these three sensors exhibit excellent performance. Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electronion spectrometer (MagEIS) of the Van Allen Probes spacecraft, with an average relative deviation of 27.3\% for the energy spectra. The charging currents and voltages measured by the DDCM during storms are consistent with the highenergy electron observations of the HED, demonstrating the effectiveness of the DDCM. The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather. YuGuang, Ye; Hong, Zou; QiuGang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao; Published by: Earth and Planetary Physics Published on: 04/2021 YEAR: 2021 DOI: https://doi.org/10.26464/epp2021021 Radiation belts; energetic electron detection; Pinhole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes 
2006 
In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a timedependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounceaveraged drift frequency) and asymmetric resonance modes (ω ≈ (m \textpm 1)ωd). ULF wave power spectral densities are obtained from a Fourier analysis of the electric and magnetic fields of the MHD simulation and are used in calculating the radial diffusion coefficients. The asymmetric diffusion coefficients are proportional to the magnetic field asymmetry, which is also calculated from the MHD field. The resulting diffusion coefficients vary with the radial coordinate L (the Roederer Lvalue) and with time during different phases of the storm. The last closed drift shell defines the location of the outer boundary. Both the location of the outer boundary and the value of the phase space density at the outer boundary are timevarying. The diffusion calculation simulates a 42hour period during the 24\textendash26 September 1998 magnetic storm, starting just before the storm sudden commencement and ending in the late recovery phase. The differential flux calculated in the MHD particle simulation is converted to phase space density. Phase space densities in both simulations (diffusion and MHD particle) are functions of Roederer Lvalue for fixed first and second adiabatic invariants. The Roederer Lvalue is calculated using drift shell tracing in the MHD magnetic field, and particles have zero second invariant. The radial diffusion calculation reproduces the main features of the MHD particle simulation quite well. The symmetric resonance modes dominate the radial diffusion, especially in the inner and middle L region, while the asymmetric resonances are more important in the outer region. Using both symmetric and asymmetric terms gives a better result than using only one or the other and is better than using a simple power law diffusion coefficient. We find that it is important to specify the value of the phase space density on the outer boundary dynamically in order to get better agreement between the radial diffusion simulation and the MHD particle simulation. Fei, Yue; Chan, Anthony; Elkington, Scot; Wiltberger, Michael; Published by: Journal of Geophysical Research Published on: 12/2006 YEAR: 2006 DOI: 10.1029/2005JA011211 
1