Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Multi-Instrument Characterisation of Magnetospheric Cold Plasma Dynamics in the 22 June 2015 Geomagnetic Storm

Abstract We present a comparison of magnetospheric plasma mass/electron density observations during an 11-day interval which includes the geomagnetic storm of 22 June 2015. For this study we used: equatorial plasma mass density derived from geomagnetic field line resonances (FLRs) detected by Van Allen Probes and at the ground-based magnetometer networks EMMA and CARISMA; in situ electron density inferred by the Neural-network-based Upper hybrid Resonance Determination algorithm applied to plasma wave Van Allen Probes measurements. The combined observations at L ∼ 4, MLT ∼ 16 of the two longitudinally-separated magnetometer networks show a temporal pattern very similar to that of the in situ observations: a density decrease by an order of magnitude about 1 day after the Dst minimum, a partial recovery a few hours later, and a new strong decrease soon after. The observations are consistent with the position of the measurement points with respect to the plasmasphere boundary as derived by a plasmapause test particle simulation. A comparison between plasma mass densities derived from ground and in situ FLR observations during favourable conjunctions shows a good agreement. We find however, for L < ∼3, the spacecraft measurements to be higher than the corresponding ground observations with increasing deviation with decreasing L, which might be related to the rapid outbound spacecraft motion in that region. A statistical analysis of the average ion mass using simultaneous spacecraft measurements of mass and electron density indicates values close to 1 amu in plasmasphere and higher values (∼ 2-3 amu) in plasmatrough. This article is protected by copyright. All rights reserved.

Vellante, M.; Takahashi, K.; Del Corpo, A.; Zhelavskaya, I.; Goldstein, J.; Mann, I.; Pietropaolo, E.; Reda, J.; Heilig, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029292

magnetoseismology; plasmasphere; Field line resonance; ground-based magnetometers; Van Allen Probes; Swarm satellites

2018

Roles of Flow Braking, Plasmaspheric Virtual Resonances, and Ionospheric Currents in Producing Ground Pi2 Pulsations

In one model, Pi2 pulsations are driven pulse by pulse by fast mode pulses that are launched as periodic bursty bulk flows brake when they approach the Earth. We have examined this model by analyzing data from multiple spacecraft and ground magnetometers for a Pi2 pulsation event. During the event, which started at \~2226 UT on 8 November 2014, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-D detected an \~2 min period plasma bulk flow oscillation in the near-Earth magnetotail, while THEMIS-E and Van Allen Probes-B, both located on the nightside just earthward of the electron plasmapause, detected a Pi2 pulsation consisting of a 10 mHz oscillation in the azimuthal component of the electric field and a 19-mHz oscillation in the compressional component of the magnetic field. On the ground, magnetic field oscillations containing both frequencies were observed both on the nightside and on the dayside. The nightside observations indicated that the pulsation had a radially standing structure, which is consistent with plasmaspheric virtual resonances (PVRs) excited in a magnetohydrodynamic simulation assuming an impulsive energy source. Cross-spectral analysis of the magnetotail flow oscillation and the Pi2 pulsation indicated low coherence between them. These results suggest that the flow oscillation contributed to the Pi2 pulsation as a broadband energy source and that only the spectral components matching the PVR frequencies were detected with well-defined frequencies. Ionospheric currents connected to the PVRs may be responsible for the appearance of the pulsation on the dayside.

Takahashi, Kazue; Hartinger, Michael; Vellante, Massimo; Heilig, azs; Lysak, Robert; Lee, Dong-Hun; Smith, Charles;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018JA025664

Van Allen Probes



  1