Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2016

A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25\textendash26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients Dαα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as \textquotedblleftdiffusion coefficient method\textquotedblright) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as \textquotedblleftlifetime method\textquotedblright). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. However, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.

Yu, Yiqun; Jordanova, Vania; Ridley, Aaron; Albert, Jay; Horne, Richard; Jeffery, Christopher;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022585

Diffusion Coefficient; electron lifetime; electron precipitation; ionospheric conductivity; MI coupling; Van Allen Probes; wave-particle interactions

2014

Storm time response of the mid-latitude thermosphere: Observations from a network of Fabry-Perot interferometers

Observations of thermospheric neutral winds and temperatures obtained during a geomagnetic storm on 2 October 2013 from a network of six Fabry-Perot interferometers (FPIs) deployed in the midwest United States are presented. Coincident with the commencement of the storm, the apparent horizontal wind is observed to surge westward and southward (towards the equator). Simultaneous to this surge in the apparent horizontal winds, an apparent downward wind of approximately 100 m/s lasting for 6 hours is observed. The apparent neutral temperature is observed to increase by approximately 400 K over all of the sites. Observations from an all-sky imaging system operated at the Millstone Hill observatory indicate the presence of a stable auroral red (SAR) arc and diffuse red aurora during this time. We suggest that the large sustained apparent downward winds arise from contamination of the spectral profile of the nominal thermospheric 630.0-nm emission by 630.0-nm emission from a different (non-thermospheric) source. Modeling demonstrates that the effect of an additional population of 630.0-nm photons, with a distinct velocity and temperature distribution, introduces an apparent Doppler shift when the combined emission from the two sources are analyzed as a single population. Thus, the apparent Doppler shifts should not be interpreted as the bulk motion of the thermosphere, calling into question results from previous FPI studies of mid-latitude storm-time thermospheric winds. One possible source of contamination could be fast O related to the infusion of low-energy O+ ions from the magnetosphere. The presence of low-energy O+ is supported by observations made by the Helium, Oxygen, Proton, and Electron spectrometer instruments on the twin Van Allen Probes spacecrafts, which show an influx of low-energy ions during this period. These results emphasize the importance of distributed networks of instruments in understanding the complex dynamics that occur in the upper atmosphere during disturbed conditions.

Makela, Jonathan; Harding, Brian; Meriwether, John; Mesquita, Rafael; Sanders, Samuel; Ridley, Aaron; Castellez, Michael; Ciocca, Marco; Earle, Gregory; Frissell, Nathaniel; Hampton, Donald; Gerrard, Andrew; Noto, John; Martinis, Carlos;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA019832

geomagnetic storm response; thermospheric winds; Van Allen Probes



  1