• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 1 entries in the Bibliography.

Showing entries from 1 through 1


Wave energy budget analysis in the Earth\textquoterights radiation belts uncovers a missing energy

Whistler-mode emissions are important electromagnetic waves pervasive in the Earth\textquoterights magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth\textquoterights magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80\% of the wave energy involved in wave\textendashparticle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth\textquoterights radiation belts, controlled by solar activity.

Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.;

Published by: Nature Communications      Published on: 05/2015

YEAR: 2015     DOI: 10.1038/ncomms8143

Astronomy; Fluids and plasma physics; Physical sciences; Planetary sciences