Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 47 entries in the Bibliography.


Showing entries from 1 through 47


2021

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing its dynamics. This in turn has an effect on the charged particles trapped in the outer radiation belt. Although the high-energy electron flux enhancements have received considerable attention, the high-energy electron flux enhancement pattern (L > 4) has not. This paper identifies 37 events with this enhancement pattern in the high-energy electron flux during the Van Allen Probes era. We find the enhancements coincident with HSS occurrence. The interplanetary magnetic field (IMF) exhibits north/south Bz fluctuations of Alfvénic nature with moderate amplitudes. The high-energy electron flux enhancements also correspond to long periods of auroral activity indicating a relationship to magnetotail dynamics. However, the AE index only reaches moderate values. Ultra-Low Frequency waves were present in all of the events and whistler-mode chorus waves were present in 89.1\% of the events, providing a convenient scenario for wave-particle interactions. The radial gradient of the ULF wave power related to the L, under the influence of the HSSs, is necessary to trigger the physical processes responsible for this type of high-energy electron flux enhancement pattern. This article is protected by copyright. All rights reserved.

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

Chorus and hiss scales in the inner magnetosphere: Statistics from high-resolution filter bank (FBK) Van Allen Proves multi-point measurements

AbstractThe spatial scales of whistler-mode waves, determined by their generation process, propagation, and damping, are important for assessing the scaling and efficiency of wave-particle interactions affecting the dynamics of the radiation belts. We use multi-point wave measurements in 2013-2019 by two identically equipped Van Allen Probes spacecraft covering all MLTs at L=2-6 near the geomagnetic equator to investigate the spatial extent of active regions of chorus and hiss waves, their wave amplitude distribution in the source/generation region, and the scales of chorus wave packets, employing a time-domain correlation technique to the spacecraft approaches closer than 1000 km, which happened every 70 days in 2012-2018 and every 35 days in 2018-2019. The correlation of chorus wave power dynamics using two spacecraft measurements is found to remain significant up to inter-spacecraft separations of 400 km to 750 km transverse to the background magnetic field direction, consistent with previous estimates of the chorus wave packet extent, but indicating the likely presence of two different scales of about 400 km and 750 km. Our results further suggest that the chorus source region can be slightly asymmetrical, more elongated in either the azimuthal or radial direction, which could also explain the aforementioned two different scales. An analysis of average chorus and hiss wave amplitudes at separate locations similarly reveals different radial and azimuthal extents of the corresponding wave active regions, complementing previous results based on THEMIS spacecraft statistics mainly at larger L>6. Both the chorus source region scale and the chorus active region size appear smaller inside the outer radiation belt (at L< 6) than at higher L-shells.This article is protected by copyright. All rights reserved.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Breneman, A.; Bonnell, J.W.; Hospodarsky, G.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028998

chorus waves; chorus genration; Radiation belts; Van Allen Probes

2020

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to the relativistic core population of the outer radiation belt). Here, we use a synthetic chorus wave model based on a combined database compiled from the Van Allen Probes and Cluster spacecraft VLF measurements to develop a comprehensive parametric model of electron lifetimes as a function of L-shell, electron energy, and geomagnetic activity. The wave model takes into account the wave amplitude dependence on geomagnetic latitude, wave normal angle distribution, and variations of wave frequency with latitude. We provide general analytical formulas to estimate electron lifetimes as a function of L-shell (for L = 3.0 to L = 6.5), electron energy (from 30 keV to 2 MeV), and geomagnetic activity parameterized by the AE index. The present model lifetimes are compared to previous studies and analytical results and also show a good agreement with measured lifetimes of 30 to 300 keV electrons at geosynchronous orbit.

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

Lifetimes of Relativistic Electrons as Determined From Plasmaspheric Hiss Scattering Rates Statistics: Effects of ωpe/Ωce and Wave Frequency Dependence on Geomagnetic Activity

Whistler-mode hiss waves generally determine MeV electron lifetimes inside the plasmasphere. We use Van Allen Probes measurements to provide the first comprehensive statistical survey of plasmaspheric hiss-driven quasi-linear pitch-angle diffusion rates and lifetimes of MeV electrons as a function of L*, local time, and AE index, taking into account hiss power, electron plasma frequency to gyrofrequency ratio ωpe/Ωce, hiss frequency at peak power ωm, and cross correlations of these parameters. We find that during geomagnetically active periods with hiss observations, ωpe/Ωce and ωm decrease, leading to faster electron loss. We demonstrate that spatiotemporal variations of ωm and ωpe/Ωce with AE, together with wave power changes, significantly affect MeV electron loss, potentially leading to short lifetimes of less than 1 day. A parametric model of MeV electron lifetime driven by AE for L > 2.5 up to the plasmapause is developed and validated using Magnetic Electron Ion Spectrometer (MagEIS) electron flux decay database.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Claudepierre, S.; Hospodarsky, G.; Bonnell, J.;

Published by: Geophysical Research Letters      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088052

electron lifetimes; plasmasphere; hiss waves; wave-particle interactions; Van Allen Probes

2019

Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations

Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315\textpm32 km over L shells of ~5\textendash6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direction than in the radial direction. Our findings are crucial to quantify wave-particle interaction process, particularly the nonlinear interactions between chorus and energetic electrons.

Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083118

Chorus wave; Magnetosphere; Scale size; Van Allen Probes

Timescales for electron quasi-linear diffusion by lower-band chorus waves: the effects of ω pe / Ω ce dependence on geomagnetic activity

Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demonstrate that during disturbed periods, ωpe/Ωce strongly decreases in the night sector, leading to a faster electron loss but also a much faster electron energization in two distinct regions just above the plasmapause and at L ~ 3.5\textendash5.5. Spatiotemporal variations of ωpe/Ωce with AE shape the evolution of electron energization in the outer belt, sometimes leading to very short time scales for quasi-linear megaelectron volt electron acceleration in agreement with Van Allen Probes observations.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083446

magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions

EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere

While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterights inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range of electron energies and pitch angles affected is examined to better assess the realistic effects of EMIC-driven bounce resonance on energetic electron populations based on actual, locally observed event-based parameters. Significant local diffusion coefficients (~ > 10-6 s-1) for 50- to 100-keV electrons are achieved for both H+ band wave events as well as He+ band, with diffusion coefficients peaking for near-90\textdegree pitch angles but remaining elevated for intermediate ones as well. Diffusion coefficients for higher-energy 200-keV electrons are typically multiple orders of magnitude lower (ranging from 10-11 to 10-6 s-1) and often peak at lower pitch angles (~20\textendash30\textdegree). These results suggest that both H+ and He+ band EMIC waves can play a role in shaping lower-energy electron dynamics via bounce-resonant interactions, in addition to their role in relativistic electron loss via cyclotron resonance.

Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026427

bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes

Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014

Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground and space-based observational data, global magnetohydrodynamic (MHD) simulations, and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. MHD simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfv\ en modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by Phase Space Density (PhSD) calculations for this global recovery period.

Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026184

alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes

2018

Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

Agapitov, O.; Drake, J.; Vasko, I.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2017GL076957

Electron acceleration; electron acoustic waves; induced scattering; nonlinear wave-particle interactions; Van Allen Probes; wave steepening; Whistler waves

2017

SIMULTANEOUS OBSERVATIONS OF LOWER BAND CHORUS EMISSIONS AT THE EQUATOR AND MICROBURST PRECIPITATING ELECTRONS IN THE IONOSPHERE

On December 11, 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 second burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One-second averaged variations of the chorus intensity and the microburst electron flux were well-correlated. The low altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, one second averaged, low altitude electron flux. However the large amplitude, <0.5 second duration, low altitude electron pulses require non-linear processes for their explanation.

Mozer, F.; Agapitov, O.; Blake, J.; Vasko, I;

Published by: Geophysical Research Letters      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017GL076120

chorus makes microbursts; Van Allen Probes

Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics

Chorus waves are among the most important natural electromagnetic emissions in the magnetosphere as regards their potential effects on electron dynamics. They can efficiently accelerate or precipitate electrons trapped in the outer radiation belt, producing either fast increases of relativistic particle fluxes, or auroras at high latitudes. Accurately modeling their effects, however, requires detailed models of their wave power and obliquity distribution as a function of geomagnetic activity in a particularly wide spatial domain, rarely available based solely on the statistics obtained from only one satellite mission. Here, we seize the opportunity of synthesizing data from the Van Allen Probes and Cluster spacecraft to provide a new comprehensive chorus wave model in the outer radiation belt. The respective spatial coverages of these two missions are shown to be especially complementary and further allow a good cross-calibration in the overlap domain. We used 4 years (2012-2016) of Van Allen Probes VLF data in the chorus frequency range up to 12 kHz at latitudes lower than 20 degrees, combined with 10 years of Cluster VLF measurements up to 4 kHz in order to provide a full coverage of geomagnetic latitudes up to 45 degrees in the chorus frequency range 0.1fce-0.8fce. The resulting synthetic statistical model of chorus wave amplitude, obliquity, and frequency is presented in the form of analytical functions of latitude and Kp in three different MLT sectors and for two ranges of L-shells outside the plasmasphere. Such a synthetic and reliable chorus model is crucially important for accurately modeling global acceleration and loss of electrons over the long run in the outer radiation belt, allowing a comprehensive description of electron flux variations over a very wide energy range.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Mozer, F.; Hospodarsky, G.; Bonnell, J.; Krasnoselskikh, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017JA024843

chorus waves model; Van Allen Probes

Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have the energy dispersion expected for trapped electrons bouncing between mirror points. This confirms that the electrons are rapidly (nonlinearly) scattered into the loss cone by a coherent interaction with the large amplitude (up to \~900 pT) chorus. Comparison of observed time-averaged microburst flux and estimated total electron drift shell content at L = 5.6 indicate that microbursts may represent a significant source of energetic electron loss in the outer radiation belt.

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes

Pulsating auroras produced by interactions of electrons and time domain structures

Previous evidence has suggested that either lower band chorus waves or kinetic Alfven waves scatter equatorial kilovolt electrons that propagate to lower altitudes where they precipitate or undergo further low-altitude scattering to make pulsating auroras. Recently, time domain structures (TDSs) were shown, both theoretically and experimentally, to efficiently scatter equatorial electrons. To assess the relative importance of these three mechanisms for production of pulsating auroras, 11 intervals of equatorial THEMIS data and a 4 h interval of Van Allen Probe measurements have been analyzed. During these events, lower band chorus waves produced only negligible modifications of the equatorial electron distributions. During the several TDS events, the equatorial 0.1\textendash3 keV electrons became magnetic field-aligned. Kinetic Alfven waves may also have had a small electron scattering effect. The conclusion of these studies is that time domain structures caused the most important equatorial scattering of ~1 keV electrons toward the loss cone to provide the main electron contribution to pulsating auroras. Chorus wave scattering may have provided part of the highest energy (>10 keV) electrons in such auroras.

Mozer, F.; Agapitov, O.; Hull, A.; Lejosne, S.; Vasko, I;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024223

pulsating auroras; Van Allen Probes; wave scattering

CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models

Numerical simulation studies of the Earth\textquoterights radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently these wave distribution models are based only on a single parameter, geomagnetic index (AE), and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We then perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

Aryan, Homayon; Sibeck, David; Bin Kang, Suk-; Balikhin, Michael; Fok, Mei-Ching; Agapitov, Oleksiy; Komar, Colin; Kanekal, Shrikanth; Nagai, Tsugunobu;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024159

Chorus and plasmaspheric hiss wave models; CIMI numerical simulations; Geomagnetic storm events; Radiation belt electron flux enhancements; Van Allen Probes; VLF waves; Wave-particle interaction

Electron-acoustic solitons and double layers in the inner magnetosphere

The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with energy above 200 eV provide the dominant contribution to the total electron density, while the density of cold electrons (below a few eV) is less than a few tenths of the total electron density. We show that velocities of the asymmetric ESW are close to velocity of electron-acoustic waves (existing due to the presence of cold and hot electrons) and follow the Korteweg-de Vries (KdV) dispersion relation derived for the observed plasma conditions (electron energy spectrum is a power law between about 100 eV and 10 keV and Maxwellian above 10 keV). The ESW spatial scales are in general agreement with the KdV theory. We interpret the asymmetric ESW in terms of electron-acoustic solitons and double layers (shocks waves).

Vasko, I; Agapitov, O.; Mozer, F.; Bonnell, J.; Artemyev, A.; Krasnoselskikh, V.; Reeves, G.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017GL074026

double layers; electron-acoustic waves; inner magnetosphere; solitons; Van Allen Probes

Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s-1) aboard the two Van Allen Probes spacecraft\textemdash9 h (0800\textendash1200 UT and 1700\textendash2200 UT) during two consecutive apogees on 15 July 2014. The spacecraft separations varied from about 100 to 5000 km (mostly radially); measurements covered an L shell range from 3 to 6; magnetic local time 0430\textendash0900, and magnetic latitudes were ~15 and ~5\textdegree during the two orbits. Using time-domain correlation techniques, the single chorus source spatial extent transverse to the background magnetic field has been determined to be about 550\textendash650 km for upper band chorus waves with amplitudes less than 100 pT and up to 800 km for larger amplitude, lower band chorus waves. The ratio between wave amplitudes measured on the two spacecraft is also examined to reveal that the wave amplitude distribution within a single chorus element generation area can be well approximated by a Gaussian exp(-0.5 \textperiodcentered r2/r02), with the characteristic scale r0 around 300 km. Waves detected by the two spacecraft were found to be coherent in phase at distances up to 400 km.

Agapitov, O.; Blum, L.; Mozer, F.; Bonnell, J.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL072701

chorus spatial scales; Van Allen Probes; VLF waves

Diffusive scattering of electrons by electron holes around injection fronts

Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of math formula5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L \~ 5\textendash8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023337

electron holes; electron losses; injection; Radiation belt; solitary waves; Van Allen Probes

Transverse eV ion heating by random electric field fluctuations in the plasmasphere

Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2\textendash3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07\textendash0.2 eV/h for protons and 0.007\textendash0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti\~0.3Ti\~0.3 eV could potentially explain the observations.

Artemyev, A.; Mourenas, D.; Agapitov, O.; Blum, L.;

Published by: Physics of Plasmas      Published on: 02/2017

YEAR: 2017     DOI: 10.1063/1.4976713

electric fields; Electrostatic Waves; protons; Van Allen Probes; Wave power; Whistler waves

EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013\textendash2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types\textemdashwaves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

Blum, L.; Bonnell, J.; Agapitov, O.; Paulson, K.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016GL072316

EMIC waves; inner magnetosphere; multipoint; spatial scales; Van Allen Probes

2016

Electron holes in the outer radiation belt: Characteristics and their role in electron energization

Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that is of the order of hundred Debye lengths. The perpendicular to parallel scale ratio is larger than one in a qualitative agreement with the theoretical scaling relation. The amplitudes of EH electrostatic potentials are generally below 100 V. We determine the properties of the electron population trapped within EHs by making use of the Bernstein-Green-Kruskal analysis and via analysis of EH magnetic field signatures. The density of the trapped electron population is on average 20\% of the background electron density. The perpendicular temperature of the trapped population is on average 300 eV and is larger for faster EHs. We show that energy losses of untrapped electrons scattered by EHs in the inhomogeneous background magnetic field may balance the energization of trapped electrons.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Drake, J.; Kuzichev, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023083

Electron acceleration; electron holes; injection; Radiation belt; solitary waves; Van Allen Probes

Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

Highly energetic electrons in the Earth\textquoterights Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300\textendash2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.810.1002/2016JA022775

distribution of chorus wave intensities in the inner magnetosphere; inner magnetosphere; Radiation belts; scale size of chorus wave packets; Van Allen Probes; Wave-particle interaction

EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements

Electromagnetic ion cyclotron (EMIC) waves can provide a strong source of energetic electron pitch angle scattering. These waves are often quite localized, thus their spatial extent can have a large effect on their overall scattering efficiency. Using measurements from the dual Van Allen Probes, we examine four EMIC wave events observed simultaneously on the two probes at varying spacecraft separations. Correlation of both the wave amplitude and phase observed at both spacecraft is examined to estimate the active region and coherence scales of the waves. We find well-correlated wave amplitude and amplitude modulation across distances spanning hundreds to thousands of kilometers. Phase coherence persisting 30\textendash60 s is observable during close conjunction events but is lost as spacecraft separations exceed ~1 Earth Radii.

Blum, L.; Agapitov, O.; Bonnell, J.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068799

coherence scales; EMIC waves; multipoint measurements; Van Allen Probes

Oblique Whistler-Mode Waves in the Earth\textquoterights Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics

In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth\textquoterights inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of oblique waves can significantly change the rates of particle scattering, acceleration, and precipitation into the atmosphere during quiet times as well as in the course of a storm. Finally, we discuss possible generation mechanisms for such oblique waves in the radiation belts. We demonstrate that oblique whistler-mode chorus waves can be considered as an important ingredient of the radiation belt system and can play a key role in many aspects of wave-particle resonant interactions.

Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier; Krasnoselskikh, Vladimir; Shastun, Vitalii; Mozer, Forrest;

Published by: Space Science Reviews      Published on: 04/2016

YEAR: 2016     DOI: 10.1007/s11214-016-0252-5

Earth radiation belts; Van Allen Probes; Wave-particle interaction; Whistler waves

Near-Relativistic Electron Acceleration by Landau Trapping in Time Domain Structures

Data from the Van Allen Probes have provided the first extensive evidence of nonlinear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (less than a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric field of time domain structures (TDSs) traveling at high speeds (~20,000 km/s). This observational evidence is supported by simulations and discussion of the source and spatial extent of the fast TDS. This result indicates the possibility that the electrostatic fields in TDS may generate the electron seed population for cyclotron resonance interaction with chorus waves to make higher-energy electrons.

Mozer, F.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Vasko, I.;

Published by: Geophysical Research Letters      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015GL067316

Acceleration; Van Allen Probes

2015

Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of \~1\textendash10 keV electrons and their acceleration up to 100\textendash300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies \~50\textendash200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.

Agapitov, O.; Artemyev, A.; Mourenas, D.; Mozer, F.; Krasnoselskikh, V.;

Published by: Geophysical Research Letters      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015GL066887

Landau resonance; nonlinear acceleration of electrons; oblique whistlers; Radiation belts; seed population; Van Allen Probes

Wave-particle interactions in the outer radiation belts

Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space, with the associated rapid (fraction of a bounce period) electron acceleration, to hundreds of keV by Landau resonance, in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed.

Agapitov, O.~V.; Mozer, F.~S.; Artemyev, A.~V.; Mourenas, D.; Krasnoselskikh, V.~V.;

Published by: Advances in Astronomy and Space Physics      Published on: 12/2015

YEAR: 2015     DOI:

plasma waves and instabilities; Radiation belts; Van Allen Probes; Wave-particle interaction

Empirical model of lower band chorus wave distribution in the outer radiation belt

Accurate modeling of wave-particle interactions in the radiation belts requires detailed information on wave amplitudes and wave-normal angular distributions over L shells, magnetic latitudes, magnetic local times, and for various geomagnetic activity conditions. In this work, we develop a new and comprehensive parametric model of VLF chorus waves amplitudes and obliqueness in the outer radiation belt using statistics of VLF measurements performed in the chorus frequency range during 10 years (2001\textendash2010) aboard the Cluster spacecraft. We used data from the Spatio-Temporal Analysis of Field Fluctuations-Spectrum Analyzer experiment, which spans a total frequency range from 8 Hz to 4 kHz. The statistical model is presented in the form of an analytical function of latitude and Kp (or Dst) index for day and night sectors of the magnetosphere and for two ranges of L shells above the plasmapause, from L = 4 to 5 and from L = 5 to 7. This model can be directly applied for numerical calculations of charged particle pitch angle and energy diffusion coefficients in the outer radiation belt, allowing to study with unprecedented detail their statistical properties as well as their important spatiotemporal variations with geomagnetic activity.

Agapitov, O.; Artemyev, A.; Mourenas, D.; Mozer, F.; Krasnoselskikh, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021829

model for chorus wave

Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021644

double layers; Fermi mechanism; field-aligned pitch angle distributions; outer radiation belt; thermal electron acceleration; Van Allen Probes

Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves

In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth\textquoterights radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffusive escape of electrons from the trapped regime of motion and thus can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves, non-resonant magnetic field fluctuations in the whistler-mode frequency range with moderate amplitudes around 3-15 pT (much less intense than the primary waves) can totally disrupt the trapped motion. However, the trapping of relativistic electrons by electromagnetic ion cyclotron waves is noticeably more stable. We also discuss how the proposed approach can be used to estimate the effects of wave amplitude modulations on the motion of trapped particles.

Artemyev, A.; Mourenas, D.; Agapitov, O.; Vainchtein, D.; Mozer, F.; Krasnoselskikh, V.;

Published by: Physics of Plasmas      Published on: 08/2015

YEAR: 2015     DOI: 10.1063/1.4927774

Cyclotron resonances; magnetic fields; Particle fluctuations; Plasma electromagnetic waves; Whistler waves

Approximate analytical formulation of radial diffusion and whistler-induced losses from a pre-existing flux peak in the plasmasphere

Modeling the spatio-temporal evolution of relativistic electron fluxes trapped in the Earth\textquoterights radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modelling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch-angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here, we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection) at low L together with enhanced wave-induced losses and outward radial transport at higher L. Assuming that radial diffusion can be further described as the spatial broadening within the plasmasphere of this pre-existing flux peak, simple approximate analytical solutions for the distribution of trapped relativistic electrons are derived. Such a simplified formalism provides a convenient means for easily determining whether radial diffusion actually prevails over atmospheric losses at any particular time for given electron energy E and location L. It is further used to infer favorable conditions for relativistic electron access to the inner belt, providing an explanation for the relative scarcity of such a feat under most circumstances. Comparisons with electron flux measurements on board the Van Allen Probes show a reasonable agreement between a few weeks and four months after the formation of a flux peak.

Mourenas, D.; Artemyev, A.; Agapitov, O.V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2015JA021623

inner belt; Keywords: radial diffusion; Radiation belts; Van Allen Probes

Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow h distribution (when delta theta >= 0.05 degrees), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth\textquoterights radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes > 300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth\textquoterights magnetotail. (C) 2015 AIP Publishing LLC.

Artemyev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.;

Published by: Physics of Plasmas      Published on: 06/2015

YEAR: 2015     DOI: 10.1063/1.4922061

chorus waves; CLUSTER SPACECRAFT; equatorial noise; MAGNETIC-FIELD; PLASMA; Quasi-linear diffusion; radiation belt electrons; RESONANT SCATTERING; Van Allen Probes; WHISTLER-MODE WAVES

Generation of nonlinear Electric Field Bursts in the outer radiation belt through the parametric decay of whistler waves

Huge numbers of different non-linear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on the Van Allen Probes. Some of them are associated with whistler waves. Such TDS often emerge on the forward edges of the whistler wave packets and form chains. The parametric decay of a whistler wave into a whistler wave propagating in the opposite direction and an electron acoustic wave is studied experimentally as well as analytically, using Van Allen Probes data. The resulting electron acoustic wave is considered to be the source of electron scale TDS. The measured parameters of the three waves (two whistlers and the electron acoustic wave) are in a good agreement with an assumption of their parametric interaction: ω0 = ω1 + ω2 and inline image. The bi-coherence analysis shows the non-linear nature of the observed electron-acoustic waves as well as the whistler wave and electron acoustic wave phase relation. The estimated decay instability growth rate shows that the process of three wave interaction can develop in a characteristic time smaller than one second, thus the process is rapid enough to explain the observations. This induced parametric interaction can be one of the mechanisms for quasi-periodic TDS generation in the outer Van Allen radiation belt.

Agapitov, O.; Krasnoselskikh, V.; Mozer, F.; Artemyev, A.; Volokitin, A.;

Published by: Geophysical Research Letters      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015GL064145

electron acoustic waves; nonlinear structure formation; parametric decay of whistlers; Van Allen Probes

Wave energy budget analysis in the Earth\textquoterights radiation belts uncovers a missing energy

Whistler-mode emissions are important electromagnetic waves pervasive in the Earth\textquoterights magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth\textquoterights magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80\% of the wave energy involved in wave\textendashparticle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth\textquoterights radiation belts, controlled by solar activity.

Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.;

Published by: Nature Communications      Published on: 05/2015

YEAR: 2015     DOI: 10.1038/ncomms8143

Astronomy; Fluids and plasma physics; Physical sciences; Planetary sciences

Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering

In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributions can be shaped due to relativistic electron scattering in the equatorial plane of magnetic field lines that are locally deformed by currents of hot ions injected into the inner magnetosphere. Analytical estimates, test particle simulations and observations of the AE index support this scenario. We conclude that even in the rather quiet magnetosphere, small scale (MLT-localized) injection of hot ions from the magnetotail can likely influence the relativistic electron scattering. Thus, observations of butterfly pitch-angle distributions can serve as an indicator of magnetic field deformations in the night-side inner magnetosphere. We briefly discuss possible theoretical approaches and problems formodeling such nonadiabatic electron scattering.

Artemyev, A.; Agapitov, O.; Mozer, F.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020865

butterfly distribution; Electron scattering; nonadiabatic dynamics; Radiation belts; Van Allen Probes

Magnetic field depression within electron holes

We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65\% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T⊥/T||\~2. We argue that the observed electron holes could be generated due to injections of highly anisotropic plasma sheet electrons into the outer radiation belt. These electron holes may present a source of the seed population due to transport of trapped electrons to higher latitudes and can be potentially used for distant probing of plasma properties in their source region.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Jovanovic, D.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063370

diamagnetic effect; electron hole; outer radiation belt; Van Allen Probes

Time Domain Structures: what and where they are, what they do, and how they are made

Time Domain Structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are >=1 msec pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic-field-aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers and they also produce field-aligned electrons that may be responsible for some types of auroras. These field-aligned electron distributions result from at least three processes. The first process is parallel acceleration by Landau trapping in the TDS parallel electric field. The second process is Fermi acceleration due to reflection of electrons by the TDS. The third process is an effective and rapid pitch angle scattering resulting from electron interactions with the perpendicular and parallel electric and magnetic fields of many TDS. TDS are created by current-driven and beam-related instabilities and by whistler-related processes such as parametric decay of whistlers and non-linear evolution from oblique whistlers. New results on the temporal relationship of TDS and particle injections, types of field-aligned electron pitch angle distributions produced by TDS, the mechanisms for generation of field-aligned distributions by TDS, the maximum energies of field-aligned electrons created by TDS in the absence of whistler mode waves, TDS generation by oblique whistlers and three-wave-parametric decay, and the correlation between TDS and auroral particle precipitation, are presented.

Mozer, F.S.; Agapitov, O.V.; Artemyev, A.; Drake, J.F.; Krasnoselskikh, V.; Lejosne, S.; Vasko, I.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063946

Time Domain Structures; TDS

Very Oblique Whistler Generation By Low Energy Electron Streams

Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution possesses both a significant temperature anisotropy above 3-4 keV and a plateau or heavy tail in parallel velocities at lower energies encompassing simultaneous Landau resonance with the same waves. The corresponding frequency and wave normal angle distributions of the generated very oblique lower-band chorus waves, as well as their frequency sweep rate, are evaluated analytically and compared with satellite observations, showing a reasonable agreement.

Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021135

Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation

The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves

The dynamics and structure of whistler turbulence relevant to electron acceleration in the Earth\textquoterights outer radiation belt is explored with simulations and comparisons with observations. An initial state with an electron temperature anisotropy in a spatially localized domain drives whistlers which scatter electrons. An outward propagating front of whistlers and hot electrons nonlinearly evolves to form regions of intense parallel electric field with structure similar to observations. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

Drake, J.; Agapitov, O.; Mozer, F.;

Published by: Geophysical Research Letters      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2015GL063528

Earth\textquoterights Outer Radiation Belts; Parallel electric fields; Particle acceleration; Precipitating electrons

Field-aligned chorus wave spectral power in Earth\textquoterights outer radiation belt

Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave\textendashparticle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40\textdegree. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1\textendash100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 <= L <= 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.

Breuillard, H.; Agapitov, O.; Artemyev, A.; Kronberg, E.; Haaland, S.; Daly, P.; Krasnoselskikh, V.; Boscher, D.; Bourdarie, S.; Zaliznyak, Y.; Rolland, G.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-583-2015

Chorus-type whistler waves

2014

Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler-mode waves

The distribution of trapped energetic electrons inside the Earth\textquoterights radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here, we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler-mode hiss, lightning-generated or chorus waves, is the dominant process. Quiet-time distributions are well-recovered, as well as the evolution of energized relativistic electron distributions during disturbed geomagnetic conditions. It is further shown that careful comparisons between the analytical solutions and measured distributions may allow to infer important bounce and drift averaged wave characteristics (such as wave amplitude). It could also help to improve the global understanding of underlying physical phenomena.

Mourenas, D.; Artemyev, A.; Agapitov, O.V.; Krasnoselskikh, V.; Li, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020443

electron distribution; pitch-angle distribution; Radiation belt

Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves

Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30\textendash100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This provides plausible experimental evidence of stronger pitch-angle scattering loss caused by oblique waves than by quasi-parallel waves with the same magnetic wave amplitudes, as predicted by numerical calculations.

Li, W.; Mourenas, D.; Artemyev, A.; Agapitov, O.; Bortnik, J.; Albert, J.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061260

chorus waves; electron precipitation; oblique whistler; pitch angle scattering

Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves

We present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth\textquoterights radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed, general approach is used to describe the acceleration of relativistic electrons by oblique whistler waves in the radiation belts. We demonstrate that for a wave power distribution with a hard enough power law tail inline image such that η < 5/2, the efficiency of nonlinear acceleration could be more effective than the conventional quasi-linear acceleration for 100 keV electrons.

Artemyev, A.; Vasiliev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.; Boscher, D.; Rolland, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1610.1002/2014GL061380

particle trapping; Radiation belts; Wave-particle interaction

Thermal electron acceleration by localized bursts of electric field in the radiation belts

In this paper we investigate the resonant interaction of thermal ~10-100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth\textquoterights outer radiation belts. These structures propagate mostly away from thegeomagnetic equator and share properties of soliton-like nonlinear electron-acoustic waves: a velocity of propagation is about the thermal velocity of cold electrons (~3000-10000 km/s), and a spatial scale of electric field localization alongthe field lines is about the Debye radius of hot electrons (~5-30 km). We model the nonlinear resonant interaction of these electric field structures and cold background electrons.

Artemyev, A.; Agapitov, O.; Mozer, F.; Krasnoselskikh, V.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061248

Radiation belts; thermal electrons; Van Allen Probes; Wave-particle interaction

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of \~0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed.

Mozer, S.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, D.; Roth, I.;

Published by: Physical Review Letters      Published on: 07/2014

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001

Van Allen Probes

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of \~0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed.

Mozer, F.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, G.; Roth, I.;

Published by: Phys. Rev. Lett.      Published on: 07/2014

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001

Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves

Global statistics of the amplitude distributions of hiss, lightning-generated, and other whistler mode waves from terrestrial VLF transmitters have been obtained from the EXOS-D (Akebono) satellite in the Earth\textquoterights plasmasphere and fitted as functions of L and latitude for two geomagnetic activity ranges (Kp<3 and Kp>3). In particular, the present study focuses on the inner zone L∈[1.4,2] where reliable in situ measurements were lacking. Such statistics are critically needed for an accurate assessment of the role and relative dominance of each type of wave in the dynamics of the inner radiation belt. While VLF waves seem to propagate mainly in a ducted mode at L\~1.5\textendash3 for Kp<3, they appear to be substantially unducted during more disturbed periods (Kp>3). Hiss waves are generally the most intense in the inner belt, and lightning-generated and hiss wave intensities increase with geomagnetic activity. Lightning-generated wave amplitudes generally peak within 10\textdegree of the equator in the region L<2 where magnetosonic wave amplitudes are weak for Kp<3. Based on this statistics, simplified models of each wave type are presented. Quasi-linear pitch angle and energy diffusion rates of electrons by the full wave model are then calculated. Corresponding electron lifetimes compare well with decay rates of trapped energetic electrons obtained from Solar Anomalous and Magnetospheric Particle Explorer and other satellites at L∈[1.4,2].

Agapitov, O.; Artemyev, A.; Mourenas, D.; Kasahara, Y.; Krasnoselskikh, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.410.1002/2014JA019886

Inner radiation belt; Van Allen Probes; Wave-particle interaction

2013

Storm-induced energization of radiation belt electrons: Effect of wave obliquity

New Cluster statistics allow us to determine for the first time the variations of both the obliquity and intensity of lower-band chorus waves as functions of latitude and geomagnetic activity near L\~5. The portion of wave power in very oblique waves decreases during highly disturbed periods, consistent with increased Landau damping by inward-penetrating suprathermal electrons. Simple analytical considerations as well as full numerical calculations of quasi-linear diffusion rates demonstrate that early-time electron acceleration occurs in a regime of loss-limited energization. In this regime, the average wave obliquity plays a critical role in mitigating lifetime reduction as wave intensity increases with geomagnetic activity, suggesting that much larger energization levels should be reached during the early recovery phase of storms than during quiet time or moderate disturbances, the latter corresponding to stronger losses. These new effects should be included in realistic radiation belt simulations.

Artemyev, A.; Agapitov, O.; Mourenas, D.; Krasnoselskikh, V.; Zelenyi, L.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50837

magnetic storm; Radiation belts; wave-particle interactions



  1