• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave


A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data

Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the technique to satellite data by performing two representative analyses, i.e., (i) for one specific time point to visualize the estimation procedure and (ii) for a particular time period to validate the method and construct an illustrative global chorus wave model. We demonstrate that the spatiotemporal evolution of chorus intensity in the equatorial magnetosphere can be reasonably estimated from electron flux measurements made by multiple low-altitude POES satellites with a broad coverage of L shell and magnetic local time. Such a data-based, dynamic model of chorus waves can provide near-real-time wave information on a global scale for any time period where POES electron data are available. A combination of the chorus wave spatiotemporal distribution acquired using this methodology and the direct spaceborne wave measurements can be used to evaluate the quantitative scattering caused by resonant wave-particle interactions and thus model radiation belt electron variability.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Green, Janet; Kletzing, Craig; Kurth, William; Hospodarsky, George; Pich, Maria;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.710.1002/2014JA019935

electron precipitation; global wave distribution; magnetospheric chorus; physics-based technique; wave resonant scattering