Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 38 entries in the Bibliography.


Showing entries from 1 through 38


2021

Chorus and hiss scales in the inner magnetosphere: Statistics from high-resolution filter bank (FBK) Van Allen Proves multi-point measurements

AbstractThe spatial scales of whistler-mode waves, determined by their generation process, propagation, and damping, are important for assessing the scaling and efficiency of wave-particle interactions affecting the dynamics of the radiation belts. We use multi-point wave measurements in 2013-2019 by two identically equipped Van Allen Probes spacecraft covering all MLTs at L=2-6 near the geomagnetic equator to investigate the spatial extent of active regions of chorus and hiss waves, their wave amplitude distribution in the source/generation region, and the scales of chorus wave packets, employing a time-domain correlation technique to the spacecraft approaches closer than 1000 km, which happened every 70 days in 2012-2018 and every 35 days in 2018-2019. The correlation of chorus wave power dynamics using two spacecraft measurements is found to remain significant up to inter-spacecraft separations of 400 km to 750 km transverse to the background magnetic field direction, consistent with previous estimates of the chorus wave packet extent, but indicating the likely presence of two different scales of about 400 km and 750 km. Our results further suggest that the chorus source region can be slightly asymmetrical, more elongated in either the azimuthal or radial direction, which could also explain the aforementioned two different scales. An analysis of average chorus and hiss wave amplitudes at separate locations similarly reveals different radial and azimuthal extents of the corresponding wave active regions, complementing previous results based on THEMIS spacecraft statistics mainly at larger L>6. Both the chorus source region scale and the chorus active region size appear smaller inside the outer radiation belt (at L< 6) than at higher L-shells.This article is protected by copyright. All rights reserved.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Breneman, A.; Bonnell, J.W.; Hospodarsky, G.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028998

chorus waves; chorus genration; Radiation belts; Van Allen Probes

ULF Wave Driven Radial Diffusion During Geomagnetic Storms: A statistical analysis of Van Allen Probes observations

Abstract The impact of radial diffusion in storm time radiation belt dynamics is well-debated. In this study we quantify the changes and variability in radial diffusion coefficients during geomagnetic storms. A statistical analysis of Van Allen Probes data (2012 − 2019) is conducted to obtain measurements of the magnetic and electric power spectral densities for Ultra Low Frequency (ULF) waves, and corresponding radial diffusion coefficients. The results show global wave power enhancements occur during the storm main phase, and continue into the recovery phase. Local time asymmetries show sources of wave power are both external solar wind driving and internal sources from coupling with ring current ions and substorms. Wave power enhancements are also observed at low L values (L < 4). The accessibility of wave power to low L is attributed to a depression of the Alfvén continuum. The increased wave power drives enhancements in both the magnetic and electric field diffusion coefficients by more than an order of magnitude. Significant variability in diffusion coefficients is observed, with values ranging over several orders of magnitude. A comparison to the Kp parameterised empirical model of Ozeke et al. (2014) is conducted and indicates important differences during storm times. Although the electric field diffusion coefficient is relatively well described by the empirical model, the magnetic field diffusion coefficient is approximately ∼ 10 times larger than predicted. We discuss how differences could be attributed to dataset limitations and assumptions. Alternative storm-time radial diffusion coefficients are provided as a function of L* and storm phase.

Sandhu, J.; Rae, I.; Wygant, J.; Breneman, A.; Tian, S.; Watt, C.; Horne, R.; Ozeke, L.; Georgiou, M.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029024

ULF waves; radial diffusion; outer radiation belt; Van Allen Probes; Geomagnetic storms

Van Allen probe observations of disappearance, recovery and patchiness of plasmaspheric hiss following two consecutive interplanetary shocks: First results

Abstract We present, for the first time, a plasmaspheric hiss event observed by the Van Allen probes in response to two successive interplanetary shocks occurring within an interval of ∼2 hours on December 19, 2015. The first shock arrived at 16:16 UT and caused disappearance of hiss for ∼30 minutes. Combined effect of plasmapause crossing, significant Landau damping by suprathermal electrons and their gradual removal by magnetospheric compression led to the disappearance of hiss. Calculation of electron phase space density and linear wave growth rates showed that the shock did not change the growth rate of whistler waves within the core frequency range of plasmaspheric hiss (0.1 - 0.5 kHz) during this interval making conditions unfavorable for the generation of hiss. The recovery began at ∼16:45 UT which is attributed to an enhancement in local plasma instability initiated by the first shock-induced substorm and additional possible contribution from chorus waves. This time, the wave growth rate peaked within the core frequency range ( ∼350 Hz). The second shock arrived at 18:02 UT and generated patchy hiss persisting up to ∼19:00 UT. It is shown that an enhanced growth rate and additional contribution from shock-induced poloidal Pc5 mode (periodicity ∼240 sec) ULF waves resulted in the excitation of hiss waves during this period. The hiss wave amplitudes were found to be additionally modulated by background plasma density and fluctuating plasmapause location. The investigation highlights the important roles of interplanetary shocks, substorms, ULF waves and background plasma density in the variability of plasmaspheric hiss.

Chakraborty, S.; Chakrabarty, D.; Reeves, G.; Baker, D.; Claudepierre, S.; Breneman, A.; Hartley, D.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028873

Plasmaspheric Hiss; Van Allen Probe; Interplanetary shocks; substorms; Whistlers; ULF waves; Van Allen Probes

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of density data obtained from RBSP-B and four months of data from Arase satellites. The results show that density irregularities are present globally at all MLT sectors and L-shells both inside and outside the plasmapause, with a higher occurrence at L > 4. The occurrence of density irregularities is found to be higher during disturbed geomagnetic and interplanetary conditions. The case studies presented here revealed: 1) The plasmaspheric density irregularities observed during both quiet and disturbed conditions are found to co-exist with the hot plasma sheet population. 2) During quiet periods, the plasma waves in the whistler-mode frequency range are found to be modulated by the small-scale density irregularities, with density depletions coinciding well with the decrease in whistler intensity. Our observations suggest that different source mechanisms are responsible for the generation of density structures at different MLTs and geomagnetic conditions.This article is protected by copyright. All rights reserved.

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions were amplified by local anisotropic electron distributions, and their large-scale amplitudes were modulated by the plasma density. A novel observation of this event is that chorus waves at frequencies above QP emissions exhibit a strong correlation with QP emissions. Those chorus waves intensified when the QP emissions reach their peak frequency. This indicates that embryonic QP emissions may be critical for its own intensification as well as chorus waves under certain circumstances. The low-earth-orbit POES satellite observed enhanced energetic electron precipitation in conjunction with the Van Allen Probes, providing direct evidence that QP emissions precipitate energetic electrons into the atmosphere. This scenario is quantitatively confirmed by our quasilinear diffusion simulation results.

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

2020

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wave models using plasma mass density values along the field line given by empirical power laws and from the International Reference Ionosphere model, we conclude that the waves are standing Alfvén field line resonances and that only odd-mode harmonics are excited. The model eigenfrequencies are strongly controlled by the density close to the apex of the field line, suggesting a new diagnostic for equatorial ionospheric density dynamics.

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising tone chorus elements propagating from a near equatorial (Van Allen Probes) to an off-equatorial (Arase) satellite. The chorus is observed first on the more equatorial satellite and is found to be more oblique and significantly attenuated at the off-equatorial satellite. This is consistent with the prevailing theory of chorus propagation and with the idea that chorus must propagate from the equatorial source region to higher latitudes. Ray tracing of chorus at the observed frequencies confirms that these elements could be generated parallel to the field at the equator, and propagate through the medium unducted to Van Allen Probes A and then to Arase with the observed time delay, and have the observed obliquity and intensity at each satellite.

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028315

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes

2019

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi-static subauroral ion drift electric field and parallel-accelerated electrons by kinetic Alfv\ en waves. These parallel electrons could precipitate and be accelerated via auroral acceleration processes powered by Alfv\ en waves propagating along the magnetic field with the plasmapause as a waveguide. The electron precipitation, superimposed on the heat conduction, could explain multiwavelength continuous STEVE emission. The green picket-fence emissions are likely optical manifestations of electron precipitation associated with wave structures traveling along the plasmapause.

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave

Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere

This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak-to-peak), in the large-scale electric field (~0.24 mV/m peak-to-peak), and in the cold plasma density (~250 cm-3 \textendash ~70 cm-3 peak-to-peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declining phase of the solar cycle than near solar maximum. The periodicities in these parameters are compared to solar EUV irradiance, solar wind dawn-dusk electric field, and Kp. The variations in the plasmapause location at the solar rotation period anti-correlate with solar wind electric field, magnetospheric electric field, and Kp, but not with EUV irradiance, indicating that convective erosion is the dominant physical process controlling the plasmapause at these timescales.

Thaller, S.; Wygant, J.; Cattell, C.; Breneman, A.; Tyler, E.; Tian, S.; Engel, A.; De Pascuale, S.; Kurth, W.; Kletzing, C.; Tears, J.; Malaspina, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026365

convection electric field; inner magnetosphere; Plasmapause; plasmasphere; solar rotation; Van Allen Probes

Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt

We present the first statistical analysis with continuous data coverage and non-averaged amplitudes of the prevalence and distribution of high-amplitude (> 5 mV/m) whistler-mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0-7 where they are present 1-4\% of the time. During high geomagnetic activity, high-amplitude whistler-mode wave occurrence rises above 30\% in some regions. During these active times the plasmasphere erodes to lower L and high-amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5-4) in the pre-dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact non-linearly with electrons. Results also may provide clues regarding the mechanisms which result in growth to large amplitudes.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Geophysical Research Letters      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2019GL082292

Chorus; Radiation belt; Van Allen belt; Van Allen Probes; Whistler waves

2018

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

2017

Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have the energy dispersion expected for trapped electrons bouncing between mirror points. This confirms that the electrons are rapidly (nonlinearly) scattered into the loss cone by a coherent interaction with the large amplitude (up to \~900 pT) chorus. Comparison of observed time-averaged microburst flux and estimated total electron drift shell content at L = 5.6 indicate that microbursts may represent a significant source of energetic electron loss in the outer radiation belt.

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes

Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13

Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts.

Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M.; Ergun, Robert; Russell, C.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017GL074895

electric field response; interplanetary shock; magnetopause; Radiation belt; Van Allen Probes

A multi-spacecraft event study of Pc5 ultra low frequency waves in the magnetosphere and their external drivers

We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to IMF discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, KH-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment.

Wang, Chih-Ping; Thorne, Richard; Liu, Terry; Hartinger, Michael; Nagai, Tsugunobu; Angelopoulos, Vassilis; Wygant, John; Breneman, Aaron; Kletzing, Craig; Reeves, Geoffrey; Claudepierre, Seth; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023610

IMF discontinuity; inner magnetosphere; Kelvin-Helmholtz vortices; magnetosheath; Pc5 waves; plasma sheet; Van Allen Probes

Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume

We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume

We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured over a large scale, which modulate the plasmaspheric density and result in the modulation of hiss waves via local amplification. In a later period, the 500\textendash1500 Hz periodic rising-tone whistler mode waves were strongly correlated when the two probes traversed large spatial regions and even across the plasmapause. These periodic rising-tone emissions recurred with roughly the same period as the ULF wave, but there was no one-to-one correspondence, and a cross-correlation analysis suggests that they possibly originated from large L shells although the actual cause needs further investigation.

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured over a large scale, which modulate the plasmaspheric density and result in the modulation of hiss waves via local amplification. In a later period, the 500\textendash1500 Hz periodic rising-tone whistler mode waves were strongly correlated when the two probes traversed large spatial regions and even across the plasmapause. These periodic rising-tone emissions recurred with roughly the same period as the ULF wave, but there was no one-to-one correspondence, and a cross-correlation analysis suggests that they possibly originated from large L shells although the actual cause needs further investigation.

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions\textquoteright polarization drift in the electric field of an EMIC wave.

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions\textquoteright polarization drift in the electric field of an EMIC wave.

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

\textquotedblleftZipper-like\textquotedblright periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations

An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisatellite observations shows that zipper-like magnetosonic waves mainly occur on the dawnside to noonside, in a frequency range between 10 fcp and fLHR. The zipper-like magnetosonic waves may provide a new clue to nonlinear excitation or modulation process, while its cause still remains to be fully understood.

Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023536

magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like

2016

Van Allen Probes observations of cross-scale coupling between electromagnetic ion cyclotron waves and higher-frequency wave modes

We present observations of higher-frequency (~50\textendash2500 Hz, ~0.1\textendash0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5\textendash2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument\textquoterights burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves drops to the instrument noise level once every EMIC wave cycle. Such modulation could significantly impact wave-particle interactions such as acceleration and pitch angle scattering, which are crucial in the formation and depletion of the radiation belts. We present one case study with broadband, high-frequency waves observed to be modulated by EMIC waves repeatedly over a 2 h time span on both spacecraft. Finally, we show two additional case studies where other high-frequency wave modes exhibit similar modulation.

Colpitts, C.; Cattell, C.; Engebretson, M.; Broughton, M.; Tian, S.; Wygant, J.; Breneman, A.; Thaller, S.;

Published by: Geophysical Research Letters      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016GL071566

EMIC; Modulation; precipitation; Radiation belt; Van Allen Probes; wave; whistler

Hiss or Equatorial Noise? Ambiguities in Analyzing Suprathermal Ion Plasma Wave Resonance

Previous studies have shown that low energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined there was a depletion in the 1-10 eV ion population in the post-midnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions between 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves ranging between 150 and 600 Hz. Measurements from the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) data set are used to analyze waves of this frequency in near-Earth space. However, when we examine the polarization of the waves in the 150 to 600 Hz range in the equatorial plane, the majority are right-hand polarized plasmaspheric hiss waves. The 1-10 eV H+ equatorially mirroring population does not interact with right hand waves, despite a strong statistical relationship suggesting the two is linked. We present evidence supporting the relationship, both in our own work and the literature, but we ultimately conclude that the 1-10 eV H+ heating is not related to the strong enhancement of 150 to 600 Hz waves.

Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; ik, Ondrej; Morley, Steven; Breneman, Aaron; Larsen, Brian; Reeves, Geoff; Wygant, John; Hospodarsky, George; Kletzing, Craig; Moldwin, Mark; Katus, Roxanne; Zou, Shasha;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022975

equatorial noise; Low Energy Ions; plasma waves; plasmasphere; Plasmaspheric Hiss; Van Allen Probes

Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes

Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV. It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. We also show noneclipse significant negative charging events on the Van Allen Probes.

Sarno-Smith, Lois; Larsen, Brian; Skoug, Ruth; Liemohn, Michael; Breneman, Aaron; Wygant, John; Thomsen, Michelle;

Published by: Space Weather      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015SW001345

EFW; HOPE; spacecraft charging; surface charging; Van Allen Probes

Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012

In this study, we investigate the possibility of nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. The data we use were measured by the Van Allen Probe B. Wave data and plasma sheet electron data are analyzed. Chorus waves were frequently measured in the morning side during the main phase of this storm. Large-amplitude chorus waves were seen of the order of \~0.6 nT and >7 mV/m, which are similar to or larger than the typical ULF waves. The waves quite often consist of rising tones during the burst sampling. Since the rising tone is known as a signature of nonlinearity, a large portion of the waves are regarded as nonlinear at least during the burst sampling periods. These results underline the importance of nonlinearity in the dynamics of chorus waves. We further compare the measurement and the nonlinear theories, based on the inhomogeneity ratio, our own calculation derived from the field equation and the backward wave oscillator model. The wave quantities examined are frequency, amplitude, frequency drift rate, and duration. This type of study is useful to more deeply understand wave-particle interactions and hence may lead to predicting the generation and loss of radiation belt electrons in the future.

Matsui, H.; Paulson, K.; Torbert, R.; Spence, H.; Kletzing, C.; Kurth, W.; Skoug, R.; Larsen, B.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015JA021772

chorus waves; Geomagnetic storm; nonlinearity; Van Allen Probes

2015

Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study

We show the first evidence for locally excited chorus at frequencies below 0.1 fce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5 fce and f/fce decreases rapidly, often to frequencies well below 0.1 fce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

Cattell, C.; Breneman, A.; Thaller, S.; Wygant, J.; Kletzing, C.; Kurth, W.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065565

Chorus; outer radiation belt; Van Allen Probes

Low-harmonic magnetosonic waves observed by the Van Allen Probes

Purely compressional electromagnetic waves (fast magnetosonic waves), generated at multiple harmonics of the local proton gyrofrequency, have been observed by various types of satellite instruments (fluxgate and search coil magnetometers and electric field sensors), but most recent studies have used data from search coil sensors, and many have been restricted to high harmonics. We report here on a survey of low-harmonic waves, based on electric and magnetic field data from the EFW double probe and EMFISIS fluxgate magnetometer instruments, respectively, on the Van Allen Probes spacecraft during its first full precession through all local times, from October 1, 2012 through July 13, 2014. These waves were observed both inside and outside the plasmapause (PP), at L shells from 2.4 to ~6 (the spacecraft apogee), and in regions with plasma number densities ranging from 10 to >1000 cm-3. Consistent with earlier studies, wave occurrence was sharply peaked near the magnetic equator. Waves appeared at all local times but were more common from noon to dusk, and often occurred within three hours after substorm injections. Outside the PP occurrence maximized broadly across noon, and inside the PP occurrence maximized in the dusk sector, in an extended plasmasphere. We confirm recent ray-tracing studies showing wave refraction and/or reflection at PP-like boundaries. Comparison with waveform receiver data indicates that in some cases these low-harmonic magnetosonic wave events occurred independently of higher-harmonic waves; this indicates the importance of including this population in future studies of radiation belt dynamics.

Posch, J.; Engebretson, M.; Olson, C.; Thaller, S.; Breneman, A.; Wygant, J.; Boardsen, S.; Kletzing, C.; Smith, C.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021179

equatorial noise; inner magnetosphere; magnetosonic waves; Van Allen Probes; waves in plasmas

Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations

Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by one order of magnitude in less than 3 hours in the outer radiation belt (L>4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064955

electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes

Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss

Over 40 years ago it was suggested that electron loss in the region of the radiation belts that overlaps with the region of high plasma density called the plasmasphere, within four to five Earth radii1, 2, arises largely from interaction with an electromagnetic plasma wave called plasmaspheric hiss3, 4, 5. This interaction strongly influences the evolution of the radiation belts during a geomagnetic storm, and over the course of many hours to days helps to return the radiation-belt structure to its \textquoteleftquiet\textquoteright pre-storm configuration. Observations have shown that the long-term electron-loss rate is consistent with this theory but the temporal and spatial dynamics of the loss process remain to be directly verified. Here we report simultaneous measurements of structured radiation-belt electron losses and the hiss phenomenon that causes the losses. Losses were observed in the form of bremsstrahlung X-rays generated by hiss-scattered electrons colliding with the Earth\textquoterights atmosphere after removal from the radiation belts. Our results show that changes of up to an order of magnitude in the dynamics of electron loss arising from hiss occur on timescales as short as one to twenty minutes, in association with modulations in plasma density and magnetic field. Furthermore, these loss dynamics are coherent with hiss dynamics on spatial scales comparable to the size of the plasmasphere. This nearly global-scale coherence was not predicted and may affect the short-term evolution of the radiation belts during active times.

Breneman, A.; Halford, A.; Millan, R.; McCarthy, M.; Fennell, J.; Sample, J.; Woodger, L.; Hospodarsky, G.; Wygant, J.; Cattell, C.; Goldstein, J.; Malaspina, D.; Kletzing, C.;

Published by: Nature      Published on: 06/2015

YEAR: 2015     DOI: 10.1038/nature14515

Magnetospheric physics; Van Allen Probes

Storm-time occurrence and Spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes Statistical study

Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much higher during geomagnetic storms. The non-compressional poloidal waves mostly occur in the late recovery phase associated with an increase of Dst toward 0, suggesting that the decay of the ring current provides their free energy source. The occurrence of dayside compressional Pc4 poloidal waves is found correlated with the variation of the solar wind dynamic pressure, indicating their origin in the solar wind. Both compressional and non-compressional waves preferentially occur on the dayside near noon at L~5-6. In addition, compressional poloidal waves are observed at MLT 18-24 on the nightside. The location of the Pc4 poloidal waves relative to the plasmapause is investigated. The RBSP statistical results may shed light on the in-depth investigations of the generation and propagation of Pc4 poloidal waves.

Dai, Lei; Takahashi, Kazue; Lysak, Robert; Wang, Chi; Wygant, John; Kletzing, Craig; Bonnell, John; Cattell, Cynthia; Smith, Charles; MacDowall, Robert; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei; Tao, Xin; Chen, Lunjin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021134

Geomagnetic storm; Pc4 ULF waves; poloidal waves; ring current; solar wind dynamic pressure; Van Allen Probes

Van Allen Probes investigation of the large scale duskward electric field and its role in ring current formation and plasmasphere erosion in the June 1, 2013 storm

Using the Van Allen Probes we investigate the enhancement in the large scale duskward convection electric field during the geomagnetic storm (Dst ~ -120 nT) on June 1, 2013 and its role in ring current ion transport and energization, and plasmasphere erosion. During this storm, enhancements of ~1-2 mV/m in the duskward electric field in the co-rotating frame are observed down to L shells as low as ~2.3. A simple model consisting of a dipole magnetic field and constant, azimuthally westward, electric field is used to calculate the earthward and westward drift of 90\textdegree pitch angle ions. This model is applied to determine how far earthward ions can drift while remaining on Earth\textquoterights night side, given the strength and duration of the convection electric field. The calculation based on this simple model indicates that the enhanced duskward electric field is of sufficient intensity and duration to transport ions from a range of initial locations and initial energies characteristic of (though not observed by the Van Allen Probes) the earthward edge of the plasma sheet during active times ( L ~ 6\textendash10 and ~1-20 keV) to the observed location of the 58\textendash267 keV ion population, chosen as representative of the ring current (L ~3.5 \textendash 5.8). According to the model calculation, this transportation should be concurrent with an energization to the range observed, ~58-267 keV. Clear coincidence between the electric field enhancement and both plasmasphere erosion and ring current ion (58\textendash267 keV) pressure enhancements are presented. We show for the first time, nearly simultaneous enhancements in the duskward convection electric field, plasmasphere erosion, and increased pressure of 58\textendash267 keV ring current ions. These 58\textendash267 keV ions have energies that are consistent with what they are expected to pick up by gradient B drifting across the electric field. These observations strongly suggest that we are observing the electric field that energizes the ions and produces the erosion of the plasmasphere.

Thaller, S.; Wygant, J.; Dai, L.; Breneman, A.W.; Kersten, K.; Cattell, C.A.; Bonnell, J.W.; Fennell, J.F.; Gkioulidou, Matina; Kletzing, C.A.; De Pascuale, S.; Hospodarsky, G.B.; Bounds, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020875

electric field; inner magnetosphere; plasma convection; plasmasphere; ring current; Van Allen Probes

Study of EMIC wave excitation using direct ion measurements

With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15\% of the total ions, but about 85\% of them are still missing. By making legitimate estimates of the unseen cold (below ~2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He-band waves but enhances the O-band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one.

Min, Kyungguk; Liu, Kaijun; Bonnell, John; Breneman, Aaron; Denton, Richard; Funsten, Herbert; Jahn, öerg-Micha; Kletzing, Craig; Kurth, William; Larsen, Brian; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020717

EMIC wave excitation; observation; linear theory and hybrid simulation; Van Allen Probes

BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.

The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and the Geostationary Operational Environmental Satellite (GOES) satellites were on either side of the BARREL/Van Allen Probe array. The solar interplanetary magnetic field was not ideally oriented to cause a significant geomagnetic storm, but compression from the shock impact led to the loss of radiation belt electrons. We propose that an azimuthal electric field impulse generated by magnetopause compression caused inward electron transport and minimal loss. This process also drove chorus waves, which were responsible for most of the precipitation observed outside the plasmapause. Observations of hiss inside the plasmapause explains the absence of loss at this location. ULF waves were found to be correlated withthe structure of the precipitation. We demonstrate how BARREL can monitor precipitation following a ICME-shock impact at Earth in a cradle-to-grave view; from flare, to SEP, to electron precipitation.

Halford, A.; McGregor, S.; Murphy, K.; Millan, R.; Hudson, M.; Woodger, L.; Cattel, C.; Breneman, A.; Mann, I.; Kurth, W.; Hospodarsky, G.; Gkioulidou, M.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020873

BARREL; Van Allen Probes

Energetic electron injections deep into the inner magnetosphere associated with substorm activity

From a survey of the first nightside season of NASA\textquoterights Van Allen Probes mission (Dec/2012 \textendash Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells <= 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L<=4 injections are limited in energy to <=250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in the Pi 2 frequency range inside the plasmasphere. These observations demonstrate that injections occur at very low L-shells and may play an important role for inner zone electrons.

Turner, D.; Claudepierre, S.; Fennell, J.; O\textquoterightBrien, T.; Blake, J.; Lemon, C.; Gkioulidou, M.; Takahashi, K.; Reeves, G.; Thaller, S.; Breneman, A.; Wygant, J.; Li, W.; Runov, A.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063225

energetic particle injections; inner magnetosphere; Radiation belts; substorms; THEMIS; Van Allen Probes

2014

Evidence for injection of relativistic electrons into the Earth\textquoterights outer radiation belt via intense substorm electric fields

Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic \textquoteleftkiller\textquoteright electrons (>=MeV) in addition to 10\textendash100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. Enhancements of hundreds of keV electrons at dipolarization in the magnetotail can account for the injected MeV electrons through earthward transport. These observations provide evidence that substorm electric fields inject relativistic electrons by transporting magnetotail electrons into the outer radiation belt. In these two events, injected relativistic electrons dominated the substorm timescale enhancement of MeV electrons as observed at geosynchronous orbit.

Dai, Lei; Wygant, John; Cattell, Cynthia; Thaller, Scott; Kersten, Kris; Breneman, Aaron; Tang, Xiangwei; Friedel, Reiner; Claudepierre, Seth; Tao, Xin;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059228

radiation belt relativistic electrons; substorm dipolarization; substorm electric fields; substorm injection

Chorus waves and spacecraft potential fluctuations: Evidence for wave-enhanced photoelectron escape

Chorus waves are important for electron energization and loss in Earth\textquoterights radiation belts and inner magnetosphere. Because the amplitude and spatial distribution of chorus waves can be strongly influenced by plasma density fluctuations and spacecraft floating potential can be a diagnostic of plasma density, the relationship between measured potential and chorus waves is examined using Van Allen Probes data. While measured potential and chorus wave electric fields correlate strongly, potential fluctuation properties are found not to be consistent with plasma density fluctuations on the timescales of individual chorus wave packets. Instead, potential fluctuations are consistent with enhanced photoelectron escape driven by chorus wave electric fields. Enhanced photoelectron escape may result in potential fluctuations of the spacecraft body, the electric field probes, or both, depending on the ambient plasma and magnetic field environment. These results differ significantly from prior interpretations of the correspondence between measured potential and wave electric fields.

Malaspina, D.; Ergun, R.; Sturner, A.; Wygant, J.; Bonnell, J; Breneman, A.; Kersten, K.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058769

Van Allen Probes

Observations of kinetic scale field line resonances

We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfv\ enic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhancements and depressions in the ratio of the electric and magnetic fields. Modeling shows that these observations are consistent with the excitation of field-line resonances over a broad range of wave numbers perpendicular to the magnetic field (k⊥) extending to k⊥ρi >> 1. The amplitude of these waves is such that E/Bo ≳ Ωi/k⊥ (E, Bo, and Ωi are the wave amplitude, background field strength, and ion gyro-frequency, respectively) leading to ion demagnetization and acceleration for multiple transitions through the wave potential.

Chaston, Christopher; Bonnell, J; Wygant, John; Mozer, Forrest; Bale, Stuart; Kersten, Kris; Breneman, Aaron; Kletzing, Craig; Kurth, William; Hospodarsky, George; Smith, Charles; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058507

Van Allen Probes



  1