• Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Fine structure of whistler-mode hiss in plasmaspheric plumes observed by the Van Allen Probes

AuthorNakamura, S.; Omura, Y.; Summers, D.;
Keywordsfine structure; hiss; nonlinear; plasmaspheric plume; Van Allen Probes
AbstractWe survey 3 years (2013-2015) of data from the Van Allen Probes related to plasmaspheric plume crossing events. We detect 194 plume crossing events, and we find that 97\% of the plumes are accompanied by VLF hiss emissions. The plumes are mainly detected on the duskside or dayside. Careful examination of the hiss spectra reveals that all hiss emissions consist of obvious fine structure. Application of a band pass filter reveals that the fine structure is consistent with the occurrence of discrete wave packets. The hiss data display high coherency. The events are classified by location. Dusk side hiss and night side hiss tend to have extremely high polarization with no chorus at the high-frequency end of the dynamic spectrum. The dusk side hiss has a distinct upper frequency limit. On the other hand, the dawn side hiss has strong chorus elements at the upper hiss frequency which makes the upper frequency limit ambiguous. We show that the structure of whistler-mode hiss is different from artificial random noise. Although noise also has fine spectral characteristics, the polarization and waveform data are totally different from the hiss cases. Our results strongly suggest that whistle-mode hiss in plasmaspheric plumes universally possesses fine structure.
Year of Publication2018
JournalJournal of Geophysical Research: Space Physics
Number of Pages
Date Published10/2018