Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





EMIC waves and associated relativistic electron precipitation on 25-26 January 2013



AuthorZhang, Jichun; Halford, Alexa; Saikin, Anthony; Huang, Chia-Lin; Spence, Harlan; Larsen, Brian; Reeves, Geoffrey; Millan, Robyn; Smith, Charles; Torbert, Roy; Kurth, William; Kletzing, Craig; Blake, Bernard; Fennel, Joseph; Baker, Daniel;
KeywordsBARREL; EMIC waves; FFT; Geomagnetic storm; relativistic electron precipitation (REP); Van Allen Probes
AbstractUsing measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25\textendash26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1\textendash3.9 and magnetic local time (MLT) = 21.0\textendash23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electrons at L = 4.2\textendash4.3 and MLT = 20.7\textendash20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the EMIC waves, wave properties, electron minimum resonant energy Emin, and electron pitch angle diffusion coefficient Dαα of a sample EMIC wave packet are examined along with solar wind plasma and interplanetary magnetic field parameters, geomagnetic activity, and results from the spectral analysis of the BARREL balloon observations to investigate the two types of events. The events occurred in the early main phase of a moderate storm (min. Dst* = -51.0 nT). The EMIC wave event consists of two parts. Unlike the first part, the second part of the EMIC wave event was locally generated and still in its source region. It is found that the REP event is likely associated with the EMIC wave event.
Year of Publication2016
JournalJournal of Geophysical Research: Space Physics
Volume
Number of Pages
Section
Date Published10/2016
ISBN
URLhttp://onlinelibrary.wiley.com/doi/10.1002/2016JA022918/full
DOI10.1002/2016JA022918