Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Global Empirical Picture of Magnetospheric Substorms Inferred From Multimission Magnetometer Data



AuthorStephens, G.; Sitnov, M.; Korth, H.; Tsyganenko, N.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A;
KeywordsCurrent sheet thinning; Data-mining; Magnetotail dipolarization; Storm-substorm relationship; substorm current wedge; substorms; Van Allen Probes
AbstractMagnetospheric substorms represent key explosive processes in the interaction of the Earth\textquoterights magnetosphere with the solar wind, and their understanding and modeling are critical for space weather forecasting. During substorms, the magnetic field on the nightside is first stretched in the antisunward direction and then it rapidly contracts earthward bringing hot plasmas from the distant space regions into the inner magnetosphere, where they contribute to geomagnetic storms and Joule dissipation in the polar ionosphere, causing impressive splashes of aurora. Here we show for the first time that mining millions of spaceborne magnetometer data records from multiple missions allows one to reconstruct the global 3-D picture of these stretching and dipolarization processes. Stretching results in the formation of a thin (less than the Earth\textquoterights radius) and strong current sheet, which is diverted into the ionosphere during dipolarization. In the meantime, the dipolarization signal propagates further into the inner magnetosphere resulting in the accumulation of a longer lived current there, giving rise to a protogeomagnetic storm. The global 3-D structure of the corresponding substorm currents including the substorm current wedge is reconstructed from data.
Year of Publication2019
JournalJournal of Geophysical Research: Space Physics
Volume
Number of Pages
Section
Date Published01/2019
ISBN
URLhttps://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025843
DOI10.1029/2018JA025843