Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





An empirically observed pitch-angle diffusion eigenmode in the Earth\textquoterights electron belt near L * = 5.0



AuthorO\textquoterightBrien, T.; Claudepierre, S.; Blake, J.; Fennell, J.; Clemmons, J.; Roeder, J.; Spence, H.; Reeves, G.; Baker, D.;
KeywordsVan Allen Probes
AbstractUsing data from NASA\textquoterights Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that empirically derived eigenmodes provide a powerful diagnostic of the dynamic processes behind exponential decays.
Year of Publication2014
JournalGeophysical Research Letters
Volume41
Number of Pages251-258
Section
Date Published01/2014
ISBN
URLhttp://doi.wiley.com/10.1002/2013GL058713
DOI10.1002/2013GL058713