Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods



AuthorMeredith, Nigel; Cain, Michelle; Horne, Richard; Thorne, Richard; Summers, D.; Anderson, Roger;
KeywordsLocal Acceleration due to Wave-Particle Interaction
AbstractWe perform a survey of the plasma wave and particle data from the CRRES satellite during 26 geomagnetically disturbed periods to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by Doppler-shifted cyclotron resonant interactions with whistler mode chorus. Relativistic electron flux enhancements associated with moderate or strong storms may be seen over the whole outer zone (3 < L < 7), typically peaking in the range 4 < L < 5, whereas those associated with weak storms and intervals of prolonged substorm activity lacking a magnetic storm signature (PSALMSS) are typically observed further out in the regions 4 < L < 7 and 4.5 < L < 7, respectively. The most significant relativistic electron flux enhancements are seen outside of the plasmapause and are associated with periods of prolonged substorm activity with AE greater than 100 nT for a total integrated time greater than 2 days or greater than 300 nT for a total integrated time greater than 0.7 days. These events are also associated with enhanced fluxes of seed electrons and enhanced lower-band chorus wave power with integrated lower-band chorus wave intensities of greater than 500 pT2 day. No significant flux enhancements are seen unless the level of substorm activity is sufficiently high. These results are consistent with a local, stochastic, chorus-driven electron acceleration mechanism involving the energization of a seed population of electrons with energies of a few hundred keV to relativistic energies operating on a timescale of the order of days.
Year of Publication2003
JournalJournal of Geophysical Research
Volume108
Number of Pages
Section
Date Published06/2003
ISBN
URLhttp://onlinelibrary.wiley.com/doi/10.1029/2002JA009764/abstract
DOI10.1029/2002JA009764