Bibliography
Notice:

Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2021 
A Comparison of Radial Diffusion Coefficients in 1D and 3D LongTerm Radiation Belt Simulations AbstractRadial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the dataset used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), Brautigam et al. (2005), Ozeke et al. (2014), Ali et al. (2015); Ali et al. (2016); Ali (2016), and Liu et al. (2016) on longterm radiation belt modeling using the Versatile Electron Radiation Belt (VERB) code, and compare the results to Van Allen Probes observations. First, 1D radial diffusion simulations are performed, isolating the contribution of solely radial diffusion. We then take into account effects of local acceleration and loss showing additional 3D simulations, including diffusion across pitchangle, energy, and mixed diffusion. For the L* range studied, the difference between simulations with Brautigam and Albert (2000), Ozeke et al. (2014), and Liu et al. (2016) parameterizations is shown to be small, with Brautigam and Albert (2000) offering the smallest averaged (across multiple energies) absolute normalized difference with observations. Using the Ali et al. (2016) parameterization tended to result in a lower flux than both the observations and the VERB simulations using the other coefficients. We find that the 3D simulations are less sensitive to the radial diffusion coefficient chosen than the 1D simulations, suggesting that for 3D radiation belt models, a similar result is likely to be achieved, regardless of whether Brautigam and Albert (2000), Ozeke et al. (2014), and Liu et al. (2016) parameterizations are used.This article is protected by copyright. All rights reserved. Drozdov, A; Allison, H.; Shprits, Y; Elkington, S.R.; Aseev, N.A.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021 DOI: https://doi.org/10.1029/2020JA028707 Radiation belts; radial diffusion; VERB code; Van Allen Probes 
Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue insitu radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spinaveraged flux measurements from the MEPe, HEPL, HEPH, and XEPSSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van Allen Probes measurements show a close agreement over a wide range of energies, observing a similar general evolution of electron flux, as well as average, peak, and minimum values. Measurements from the two missions agree especially well in the 3.6 ≤ L* ≤ 4.4 range where Arase samples similar magnetic latitudes to Van Allen Probes. Arase tends to record higher flux for energies < 670 keV with longer decay times after flux enhancements, particularly for L* < 3.6 . Conversely, for energies > 1.4 MeV, Arase flux measurements are generally lower than those of Van Allen Probes, especially for L* > 4.4 . The correlation coefficient values show that the > 1.4 MeV flux from both missions are well correlated, indicating a similar general evolution, although flux magnitudes differ. We perform a preliminary intercalibration between the two missions using the mean ratio of the fluxes as an energy and L* dependent intercalibration factor. The intercalibration factor improves agreement between the fluxes in the 0.581 MeV range. This article is protected by copyright. All rights reserved. SzabóRoberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021 DOI: https://doi.org/10.1029/2020JA028929 
2020 
The Implications of Temporal Variability in WaveParticle Interactions in Earth s Radiation Belts Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusionbased framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an average of observationspecific D. We find that the evolution and final state of the numerical experiment depends upon the variability time scale of D; experiments with longer variability time scales differ from those with shorter time scales, even when the timeintegrated diffusion is the same. Short variability time scale experiments converge with solutions obtained using an averaged observationspecific D, and both exhibit greater diffusion than experiments using the averagedinput D. These experiments reveal the importance of temporal variability in radiation belt diffusion. Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.; Published by: Geophysical Research Letters Published on: 12/2020 YEAR: 2020 DOI: https://doi.org/10.1029/2020GL089962 probabilistic methods; stochastic parameterization; Van Allen Probes 
In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant μ ranging from 300 to 3,000 MeV G−1. We inspect the innovation vector and perform a statistical analysis to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. Our results are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. We show that EMIC wave scattering tends to dominate loss at lower L shells, and it may amount to between 10\%/hr and 30\%/hr of the maximum value of phase space density (PSD) over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50\%/hr to 70\%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt. Cervantes, S.; Shprits, Y; Aseev, N.; Allison, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2020 YEAR: 2020 DOI: https://doi.org/10.1029/2020JA028208 data assimilation; EMIC waves; magnetopause shadowing; innovation vector; Kalman Filter; radiation belt losses; Van Allen Probes 
In this study, we performed a series of longterm and individual storm simulations with and without hiss, chorus, and electromagnetic ion cyclotron (EMIC) waves. We compared simulation results incorporating different wave modes with Van Allen Probes flux observations to illustrate how hiss and chorus waves aid EMIC waves in depleting multiMeV electrons. We found that EMIC, hiss, and chorus waves are required to reproduce satellite measurements in our simulations. Our results indicate that hiss waves play a dominant role in scattering nearequatorial mirroring electrons, and they assist EMIC waves, which scatter only small pitch angle electrons. The best agreement between the observations and the simulations (longterm and 17 January 2013 storm) is achieved when hiss, chorus, and EMIC waves are included. Drozdov, A; Usanova, M.; Hudson, M.; Allison, H.; Shprits, Y; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2020 YEAR: 2020 DOI: https://doi.org/10.1029/2020JA028282 EMIC waves; Radiation belts; Whistler waves; VERB code; FokkerPlanck diffusion equation; Van Allen Probes 
2019 
Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss In the outer radiation belt, the acceleration and loss of highenergy electrons is largely controlled by waveparticle interactions. Quasilinear diffusion coefficients are an efficient way to capture the smallscale physics of waveparticle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly nonGaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of waveparticle interactions could use variability information to improve modeling of the outer radiation belt. Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019 DOI: 10.1029/2018JA026401 empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; waveparticle interactions 
2018 
Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit Variations in the highenergy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lowerenergy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the lowaltitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:xwiley:jgra:media:jgra54628:jgra54628math0001 functions to pitch angle distributions given by three and a half years of Van Allen Probes data. Two methods to convert from integral to differential flux are explored. One utilizes integral and differential flux energy distributions from the AE9 model, the second employs an iterative fitting approach based on a Reverse Monte Carlo (RMC) method. The omnidirectional differential flux was converted to an equatorial pitch angle of 90\textdegree, again using statistical pitch angle distributions from Van Allen Probe data. We validate the resulting 90\textdegree flux for 100 to 600keV electrons against measurements from the Van Allen Probes and show an average agreement within a factor of 4 for L* > 3.7. The resulting data set offers a high time resolution, across multiple magnetic local time planes, and may be used to formulate eventspecific lowenergy boundary conditions for radiation belt models. Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2018 YEAR: 2018 DOI: 10.1029/2018JA025786 electrons; integral flux; Radiation belts; seed population; Van Allen Probes 
1