Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2015

Successes and challenges of operating the Van Allen Probes mission in the radiation belts

The Van Allen probes team has been successful in monitoring and trending the performance of the mission to date. However, operating two spacecraft in the Van Allen radiation belts poses a number of challenges and requires careful monitoring of spacecraft performance due to the high radiation environment and potential impact on the mostly single string electronics architecture. Spacecraft and instrument telemetry trending is tracked with internal peer reviews conducted twice a year by the operations and engineering teams. On board radiation monitoring sensors are used to evaluate total dose accumulated on board the spacecraft and to assess potential impacts. Single event upsets are tracked and high activity events are logged and analyzed. Anomalous data is compared to radiation and solar event activity to determine if there is correlation. Solar array degradation is monitored in real time using a dedicated monitored solar cell and performance is compared to predicted degradation rates. Examples of the effects of radiation on various subsystems and instruments will be given and the impacts discussed as the Van Allen probes team prepares to take on the challenge of an extended mission of continued operations in the radiation belt.

Kirby, Karen; Fretz, Kristin; Goldsten, John; Maurer, Richard;

Published by:       Published on: 03/2015

YEAR: 2015     DOI: 10.1109/AERO.2015.7119179

Van Allen Probes

2013

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10o inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

Van Allen Probes: Successful launch campaign and early operations exploring Earth\textquoterights radiation belts

The twin Van Allen Probe observatories developed at The Johns Hopkins University Applied Physics Laboratory for NASA\textquoterights Heliophysics Division completed final observatory integration and environmental test activities and were successfully launched into orbit around the Earth on August 30, 2012. As the science operations phase begins, the mission is providing exciting new information about the impact of radiation belt activity on the earth. The on-board boom mounted magnetometers and other instruments are the most sensitive sensors of their type that have ever flown in the Van Allen radiation belts. The observatories are producing near-Earth space weather information that can be used to provide warnings of potential power grid interruptions or satellite damaging storms. The Van Allen Probes are operating in a challenging high radiation environment, and at the same time they are designed to make an insubstantial electric and magnetic field contribution to their surroundings. This paper will describe the challenges associated with observatory integration and test activities and observatory on-orbit checkout and commissioning. The lessons learned can be applied to other observatories and payloads that will be exposed to similar environments.

Kirby, Karen; Stratton, Jim;

Published by:       Published on: 03/2013

YEAR: 2013     DOI: 10.1109/AERO.2013.6496838

Van Allen Probes

2012

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes



  1