Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2013

Early Results From the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission

The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth\textquoterights Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates.

Maurer, Richard; Goldsten, John; Peplowski, Patrick; Holmes-Siedle, Andrew; Butler, Michael; Herrmann, Carl; Mauk, Barry;

Published by: IEEE Transactions on Nuclear Science      Published on: Jan-12-2013

YEAR: 2013     DOI: 10.1109/TNS.2013.2281937

Early Results from the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission

The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth\textquoterights Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates.

Maurer, Richard; Goldsten, J.; Peplowski, P.; Holmes-Siedle, A.; Butler, Michael; Herrmann, C.; Mauk, B.;

Published by:       Published on: 11/2013

YEAR: 2013     DOI: 10.1109/TNS.2013.2281937

RBSP; Van Allen Probes

The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA\textquoterights Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of \~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (\~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (\~3000 fA/cm2) and provide sufficient sensitivity (\~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

Goldsten, J.; Maurer, R.; Peplowski, P.; Holmes-Siedle, A.; Herrmann, C.; Mauk, B.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9917-x

RBSP; Van Allen Probes

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10o inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

2012

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes



  1