Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes

Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred hertz and 10 kHz, which are generated by the same lightning strokes and which propagate along very similar paths to the two spacecraft. Measured amplitudes of the magnetic field fluctuations are the same within ∼14\% precision of our analysis, corresponding to 1.2 dB. Currently archived electric field measurements show twice larger amplitudes on Arase compared to Van Allen Probes but they start to match within ∼33\% precision (2.5 dB) once the newest results on the interface of the antennas to the surrounding plasma are included in the calibration procedures. Ray tracing simulations help us to build a consistent scenario of wave propagation to both spacecraft reflected by a successful inter-calibration of the polarization and propagation parameters obtained from multicomponent measurements. We succeed in linking the spacecraft observations to localizations of lightning return strokes by two different ground based networks which independently verify the correctness of the Universal Time tags of waveform measurements by both spacecraft missions, with an uncertainty better than 10 ms. This article is protected by copyright. All rights reserved.

Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029700

calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes

2014

Equivalent Circuit Model for the Electric Field Sensitivity of a Magnetic Search Coil of Space Plasma

Magnetic search coils (MSCs) are sensitive to both magnetic and electric fields, but detecting electric fields is unnecessary for magnetic observations of plasma waves. However, it is important to evaluate both sensitivities for different geometries and electrostatic shields to avoid electric field pickup. An equivalent circuit model for the electric field sensitivity of an MSC in a collisionless isotropic cold plasma is developed here using electrical coupling through a sheath capacitance. That sensitivity is defined by a relationship between the MSC impedance and the sheath capacitance. To confirm the validity of the circuit model, the sensitivity to an electric field is measured by imposing an external electric field using charged parallel metallic plates in laboratory experiments. The coupling capacitance between the MSC and the charged plates is equivalent to the sheath capacitance in a space plasma. The measured results show good agreement with an approximate expression deduced from the equivalent circuit model.

Ozaki, Mitsunori; Yagitani, Satoshi; Takahashi, Ken; Imachi, Tomohiko; Koji, Hiroki; Higashi, Ryoichi;

Published by: IEEE Sensors Journal      Published on: 10/2014

YEAR: 2014     DOI: 10.1109/JSEN.2014.2365495

electric field sensitivity; Magnetic search coils; sheath impedance; space plasmas



  1