• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 6 entries in the Bibliography.

Showing entries from 1 through 6


Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/MetOp satellites, and the RAM-SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 hours. Ground observations tend not to observe ELF/VLF waves in the post-midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post-midnight sector.

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI:

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI:

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes


Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. These results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.

Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070008

fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions

ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A

We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04\textendash06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04\textendash06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisphere. Using cross-correlation analysis, we did, for the first time, time delay analysis of a conjugate ELF/VLF event between ground and space, finding +2 to +4 s (ATH first) for the QP and -3 s (RBSP A first) for the pulse. Using backward tracing from ATH to the geomagnetic equator and forward tracing from the equator to RBSP A, based on plasmaspheric density observed by the spacecraft, we validate a possible propagation path for the QP emission which is consistent with the observed time delay.

Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Keika, Kunihiro; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin; Kletzing, Craig; Hanzelka, Miroslav; ik, Ondrej; Kurth, William;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2015JA022264

conjugate event; propagation; QP; Ray Tracing; time delay; Van Allen Probes; VLF/ELF


Equivalent Circuit Model for the Electric Field Sensitivity of a Magnetic Search Coil of Space Plasma

Magnetic search coils (MSCs) are sensitive to both magnetic and electric fields, but detecting electric fields is unnecessary for magnetic observations of plasma waves. However, it is important to evaluate both sensitivities for different geometries and electrostatic shields to avoid electric field pickup. An equivalent circuit model for the electric field sensitivity of an MSC in a collisionless isotropic cold plasma is developed here using electrical coupling through a sheath capacitance. That sensitivity is defined by a relationship between the MSC impedance and the sheath capacitance. To confirm the validity of the circuit model, the sensitivity to an electric field is measured by imposing an external electric field using charged parallel metallic plates in laboratory experiments. The coupling capacitance between the MSC and the charged plates is equivalent to the sheath capacitance in a space plasma. The measured results show good agreement with an approximate expression deduced from the equivalent circuit model.

Ozaki, Mitsunori; Yagitani, Satoshi; Takahashi, Ken; Imachi, Tomohiko; Koji, Hiroki; Higashi, Ryoichi;

Published by: IEEE Sensors Journal      Published on: 10/2014

YEAR: 2014     DOI: 10.1109/JSEN.2014.2365495

electric field sensitivity; Magnetic search coils; sheath impedance; space plasmas

Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign

We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17\textendash25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly within a period of 1 h without corresponding magnetic pulsations. QP emissions showed positive correlation between amplitude and frequency sweep rate, similarly to rising-tone elements. We found an event of nearly simultaneous enhancements of QP emissions and Pc1/electromagnetic ion cyclotron wave intensities, suggesting that the temperature anisotropy of electrons and ions developed simultaneously at the equatorial plane of the magnetosphere. We also found QP emissions whose intensity suddenly increased in association with storm sudden commencement without changing their frequency. Falling-tone ELF/VLF emissions were observed with their rate of frequency change varying from 0.7 to 0.05 kHz/s over 10 min. Bursty-patch emissions in the lower and upper frequency bands are often observed during magnetically disturbed periods. Clear systematic correlation between these various ELF/VLF emissions and cosmic noise absorption was not obtained throughout the campaign period. These observations indicate several previously unknown features of ELF/VLF emissions in subauroral latitudes and demonstrate the importance of continuous measurements for monitoring temporal variations in these emissions.

Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020161

Chorus; ELF/VLF; Radiation belts; subauroral latitudes; wave-particle interactions