• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 3 entries in the Bibliography.

Showing entries from 1 through 3


Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections

We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15\textendash22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock-compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substructures and their conditions that influenced the Earth\textquoterights magnetosphere. In particular, the main depletions occurred during a high-dynamic pressure sheath and shock-compressed southward ejecta fields. These structures compressed/eroded the magnetopause close to geostationary orbit and induced intense and diverse wave activity in the inner magnetosphere (ULF Pc5, electromagnetic ion cyclotron, and hiss) facilitating both effective magnetopause shadowing and precipitation losses. Seed and source electrons in turn experienced stronger variations throughout the studied interval. The core fluxes recovered during the last ICME that made a glancing blow to Earth. This period was characterized by a concurrent lack of losses and sustained acceleration by chorus and Pc5 waves. Our study highlights that the seemingly complex behavior of the outer belt during interacting ICMEs can be understood by the knowledge of electron dynamics during different substructures.

Kilpua, E.; Turner, D.; Jaynes, A.; Hietala, H.; Koskinen, H.; Osmane, A.; Palmroth, M.; Pulkkinen, T.; Vainio, R.; Baker, D.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026238

interplanetary coronal mass ejections; magnetospheric storm; magnetospheric waves; Outer Belt; Radiation belts; Solar wind; Van Allen Probes


On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave\textendashparticle interactions. We show that wave parameters, consistent with large-amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (>1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles $\theta _kB\gt 50^\circ $ and phase-speeds $v_\rm\Phi \geqslant c/9$. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons ($E\geqslant 100$ keV) on kinetic timescales, which is much faster than previously inferred.

Osmane, Adnane; , Lynn; Blum, Lauren; Pulkkinen, Tuija;

Published by: The Astrophysical Journal      Published on: 01/2016

YEAR: 2016     DOI: 10.3847/0004-637X/816/2/51

acceleration of particles; Earth; Plasmas; relativistic processes; solar\textendashterrestrial relations; Van Allen Probes; waves


On the threshold energization of radiation belt electrons by double layers

Using a Hamiltonian approach, we quantify the energization threshold of electrons interacting with radiation belts\textquoteright double layers discovered by Mozer et al. (2013). We find that double layers with electric field amplitude E0 ranging between 10 and 100 mV/m and spatial scales of the order of few Debye lengths are very efficient in energizing electrons with initial velocities v|| <= vth to 1 keV levels but are unable to energize electrons with E >= 100 keV. Our results indicate that the localized electric field associated with the double layers are unlikely to generate a seed population of 100 keV necessary for a plethora of relativistic acceleration mechanisms and additional transport to higher energetic levels.

Osmane, A.; Pulkkinen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020236

Radiation belts; wave-particle interactions