Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 15 entries in the Bibliography.


Showing entries from 1 through 15


2019

EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere

While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterights inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range of electron energies and pitch angles affected is examined to better assess the realistic effects of EMIC-driven bounce resonance on energetic electron populations based on actual, locally observed event-based parameters. Significant local diffusion coefficients (~ > 10-6 s-1) for 50- to 100-keV electrons are achieved for both H+ band wave events as well as He+ band, with diffusion coefficients peaking for near-90\textdegree pitch angles but remaining elevated for intermediate ones as well. Diffusion coefficients for higher-energy 200-keV electrons are typically multiple orders of magnitude lower (ranging from 10-11 to 10-6 s-1) and often peak at lower pitch angles (~20\textendash30\textdegree). These results suggest that both H+ and He+ band EMIC waves can play a role in shaping lower-energy electron dynamics via bounce-resonant interactions, in addition to their role in relativistic electron loss via cyclotron resonance.

Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026427

bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes

2017

Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s-1) aboard the two Van Allen Probes spacecraft\textemdash9 h (0800\textendash1200 UT and 1700\textendash2200 UT) during two consecutive apogees on 15 July 2014. The spacecraft separations varied from about 100 to 5000 km (mostly radially); measurements covered an L shell range from 3 to 6; magnetic local time 0430\textendash0900, and magnetic latitudes were ~15 and ~5\textdegree during the two orbits. Using time-domain correlation techniques, the single chorus source spatial extent transverse to the background magnetic field has been determined to be about 550\textendash650 km for upper band chorus waves with amplitudes less than 100 pT and up to 800 km for larger amplitude, lower band chorus waves. The ratio between wave amplitudes measured on the two spacecraft is also examined to reveal that the wave amplitude distribution within a single chorus element generation area can be well approximated by a Gaussian exp(-0.5 \textperiodcentered r2/r02), with the characteristic scale r0 around 300 km. Waves detected by the two spacecraft were found to be coherent in phase at distances up to 400 km.

Agapitov, O.; Blum, L.; Mozer, F.; Bonnell, J.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL072701

chorus spatial scales; Van Allen Probes; VLF waves

Transverse eV ion heating by random electric field fluctuations in the plasmasphere

Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2\textendash3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07\textendash0.2 eV/h for protons and 0.007\textendash0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti\~0.3Ti\~0.3 eV could potentially explain the observations.

Artemyev, A.; Mourenas, D.; Agapitov, O.; Blum, L.;

Published by: Physics of Plasmas      Published on: 02/2017

YEAR: 2017     DOI: 10.1063/1.4976713

electric fields; Electrostatic Waves; protons; Van Allen Probes; Wave power; Whistler waves

EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013\textendash2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types\textemdashwaves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

Blum, L.; Bonnell, J.; Agapitov, O.; Paulson, K.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016GL072316

EMIC waves; inner magnetosphere; multipoint; spatial scales; Van Allen Probes

2016

EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements

Electromagnetic ion cyclotron (EMIC) waves can provide a strong source of energetic electron pitch angle scattering. These waves are often quite localized, thus their spatial extent can have a large effect on their overall scattering efficiency. Using measurements from the dual Van Allen Probes, we examine four EMIC wave events observed simultaneously on the two probes at varying spacecraft separations. Correlation of both the wave amplitude and phase observed at both spacecraft is examined to estimate the active region and coherence scales of the waves. We find well-correlated wave amplitude and amplitude modulation across distances spanning hundreds to thousands of kilometers. Phase coherence persisting 30\textendash60 s is observable during close conjunction events but is lost as spacecraft separations exceed ~1 Earth Radii.

Blum, L.; Agapitov, O.; Bonnell, J.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068799

coherence scales; EMIC waves; multipoint measurements; Van Allen Probes

On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave\textendashparticle interactions. We show that wave parameters, consistent with large-amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (>1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles $\theta _kB\gt 50^\circ $ and phase-speeds $v_\rm\Phi \geqslant c/9$. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons ($E\geqslant 100$ keV) on kinetic timescales, which is much faster than previously inferred.

Osmane, Adnane; , Lynn; Blum, Lauren; Pulkkinen, Tuija;

Published by: The Astrophysical Journal      Published on: 01/2016

YEAR: 2016     DOI: 10.3847/0004-637X/816/2/51

acceleration of particles; Earth; Plasmas; relativistic processes; solar\textendashterrestrial relations; Van Allen Probes; waves

2015

Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013

Electromagnetic ion cyclotron (EMIC) waves have been suggested to be a cause of radiation belt electron loss to the atmosphere. Here simultaneous, magnetically conjugate measurements are presented of EMIC wave activity, measured at geosynchronous orbit and on the ground, and energetic electron precipitation, seen by the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign, on two consecutive days in January 2013. Multiple bursts of precipitation were observed on the duskside of the magnetosphere at the end of 18 January and again late on 19 January, concurrent with particle injections, substorm activity, and enhanced magnetospheric convection. The structure, timing, and spatial extent of the waves are compared to those of the precipitation during both days to determine when and where EMIC waves cause radiation belt electron precipitation. The conjugate measurements presented here provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss.

Blum, L.; Halford, A.; Millan, R.; Bonnell, J.; Goldstein, J.; Usanova, M.; Engebretson, M.; Ohnsted, M.; Reeves, G.; Singer, H.; Clilverd, M.; Li, X.;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL065245

electron precipitation; EMIC waves; Radiation belts; Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

2014

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

THEMIS measurements of quasi-static electric fields in the inner magnetosphere

We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of strong electric fields inside L =3 during the most active times. The extensive dataset from THEMIS also confirms the day/night asymmetry on the dusk side, where the enhancement is closest to Earth in the dusk-midnight sector, and is farther away closer to noon. A similar, but smaller in magnitude, local maximum is observed on the dawn side near L =4. The noon sector shows the smallest average electric fields, and for more active times, the enhancement develops near L =7 rather than L =4. We also investigate the impact of the uncertain boom-shorting factor on the results, and show that while the absolute magnitude of the electric field may be underestimated, the trends with geomagnetic activity remain intact.

Califf, S.; Li, X.; Blum, L.; Jaynes, A.; Schiller, Q.; Zhao, H.; Malaspina, D.; Hartinger, M.; Wolf, R.; Rowland, D.; Wygant, J.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020360

convection; double probe; electric field; inner magnetosphere

A nonstorm time enhancement of relativistic electrons in the outer radiation belt

Despite the lack of a geomagnetic storm (based on the Dst index), relativistic electron fluxes were enhanced over 2.5 orders of magnitude in the outer radiation belt in 13 h on 13\textendash14 January 2013. The unusual enhancement was observed by Magnetic Electron Ion Spectrometer (MagEIS), onboard the Van Allen Probes; Relativistic Electron and Proton Telescope Integrated Little Experiment, onboard the Colorado Student Space Weather Experiment; and Solid State Telescope, onboard Time History of Events and Macroscale Interactions during Substorms (THEMIS). Analyses of MagEIS phase space density (PSD) profiles show a positive outward radial gradient from 4 < L < 5.5. However, THEMIS observations show a peak in PSD outside of the Van Allen Probes\textquoteright apogee, which suggest a very interesting scenario: wave-particle interactions causing a PSD peak at ~ L* = 5.5 from where the electrons are then rapidly transported radially inward. This letter demonstrates, for the first time in detail, that geomagnetic storms are not necessary for causing dramatic enhancements in the outer radiation belt.

Schiller, Quintin; Li, Xinlin; Blum, Lauren; Tu, Weichao; Turner, Drew; Blake, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058485

Van Allen Probes

One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)

The Colorado Student Space Weather Experiment is a 3-unit (10cm \texttimes 10cm \texttimes 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 \texttimes 780 km, 65\textdegree orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program. The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On September 13, 2013, CSSWE completed one year of on-orbit operations. In this talk we will discuss the issues encountered with designing and operating a cubesat in orbit. Data from the mission will be presented and discussed in the larger context of ionospheric and magnetospheric physics.

Palo, Scott; Gerhardt, David; Li, Xinlin; Blum, Lauren; Schiller, Quintin; Kohnert, Rick;

Published by:       Published on: 01/2014

YEAR: 2014     DOI: 10.1109/USNC-URSI-NRSM.2014.6928087

artificial satellites; atmospheric measuring apparatus; Ionosphere; Magnetic Storms; Magnetosphere; Van Allen Probes

2013

New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation

Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons were observed on 18\textendash19 January 2013, concurrent with precipitation seen by the 2013 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign. The newly available conjugate measurements allow for a detailed estimate of the temporal and spatial features of precipitation bands for the first time. We estimate the net electron loss due to the precipitation bands and find that ~20 such events could empty the entire outer belt. This study suggests that precipitation bands play a critical role in radiation belt losses.

Blum, L.; Schiller, Q.; Li, X.; Millan, R.; Halford, A.; Woodger, L.;

Published by: Geophysical Research Letters      Published on: 11/2013

YEAR: 2013     DOI: 10.1002/2013GL058546

CubeSats; precipitation; Radiation belts; Van Allen Probes

First Results from CSSWE CubeSat: Characteristics of Relativistic Electrons in the Near-Earth Environment During the October 2012 Magnetic Storms

Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat mission, which was launched into a highly inclined (65\textdegree) low Earth orbit, are analyzed along with measurements from the Relativistic Electron and Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes, which are in a low inclination (10\textdegree) geo-transfer-like orbit. Both REPT and MagEIS measure the full distribution of energetic electrons as they traverse the heart of the outer radiation belt. However, due to the small equatorial loss cone (only a few degrees), it is difficult for REPT and MagEIS to directly determine which electrons will precipitate into the atmosphere, a major radiation belt loss process. REPTile, a miniaturized version of REPT, measures the fraction of the total electron population that has small enough equatorial pitch angles to reach the altitude of CSSWE, 480 km \texttimes 780 km, thus measuring the precipitating population as well as the trapped and quasi-trapped populations. These newly available measurements provide an unprecedented opportunity to investigate the source, loss, and energization processes that are responsible for the dynamic behavior of outer radiation belt electrons. The focus of this paper will be on the characteristics of relativistic electrons measured by REPTile during the October 2012 storms; also included are long-term measurements from the Solar Anomalous and Magnetospheric Particle Explorer to put this study into context.

Li, X.; Schiller, Q.; Blum, L.; Califf, S.; Zhao, H.; Tu, W.; Turner, D.; Gerhardt, D.; Palo, S.; Kanekal, S.; Baker, D.; Fennell, J.; Blake, J.; Looper, M.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2013

YEAR: 2013     DOI: 10.1002/2013JA019342

RBSP; Van Allen Probes



  1