Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2009

Analysis of Spinning Spacecraft with Wire Booms Part 1: Derivation of Nonlinear Dynamics

Algebraic expressions for the governing equations of motion are developed to describe a spinning spacecraft with flexible appendages. Two limiting cases are investigated: appendages that are self-restoring and appendages that require spacecraft motion to restore. Solar panels have sufficient root stiffness to self-restore perturbations. Radial wire antennae have little intrinsic root stiffness and require centripetal acceleration from spacecraft rotations to restore perturbations. External forces applied for attitude corrections can displace spacecraft appendages from their steady-state position. The Radiation Belt Storm Probe (RBSP) satellite is used as an example to explore numerical results for several maneuvers.

Kemp, Brian; McGee, Timothy; Shankar, Uday;

Published by:       Published on: 08/2009

YEAR: 2009     DOI: 10.2514/6.2009-6202

RBSP; Van Allen Probes

Analysis of Spinning Spacecraft with Wire Booms Part 2: Out-of-Plane Dynamics and Maneuvers

An analysis of the dynamics for a spin stabilized spacecraft consisting of a rigid central hub with four long exible wire booms is presented. The analysis focuses on the dynamics out of the spin plane of the spacecraft. Companion papers will focus on the derivations of the full nonlinear dynamics and analysis of the in plane dynamics. A linear analysis is used to estimate the mode shapes of the free response of the system, the e ects of various damping mechanisms on these modes, and the dynamic response of the system to various maneuvers. The results of an independent simulation of the full nonlinear dynamics of the system are also provided to support the linear analysis. While the dynamics and analysis approach presented can be applied to the general class of spin stabilized spacecraft having multiple exible wire booms, the numeric parameters studied represent those of the satellites from the Radiation Belt Storm Probe (RBSP) mission. The mission, part of NASA\textquoterights Living With a Star Geospace Program, will launch two Earth-orbiting spacecraft to investigate how populations of relativistic electrons and ions in the region known as the Radiation Belts are formed and change in response to variable inputs of energy from the Sun.

McGee, Timothy; Shankar, Uday; Kemp, Brian;

Published by:       Published on: 08/2009

YEAR: 2009     DOI: 10.2514/6.2009-6203

RBSP; Van Allen Probes

Analysis of Spinning Spacecraft with Wire Booms Part 3: Spin-Plane Dynamics, Maneuvers, and Deployment

Several science spacecraft use long wire booms as electric-field antennas and the spacecraft spins to maintain the orientation of these flexible wires. These booms account for a majority of the total spacecraft inertia while weighing only a small fraction of the total mass. The spacecraft dynamics is therefore dominated by these booms. The analysis of such spacecraft is further complicated by other flexible ap- pendages and the presence of damping in the system, both inherent in the sys- tem and from damping mechanisms deliberately added into the system. This pa- per and two companion papers analyze such spacecraft. The first of these derives the governing nonlinear equations from first principles. Under certain conditions, the dynamics neatly separate into spin-plane and out-of-plane dynamics. The sec- ond companion paper examines the out-of-plane dynamics and maneuvers. This paper examines the spin-plane dynamics of such a spin-stabilized spacecraft. It analyzes the fundamental modes and mode-shapes of the system, spin-plane ma- neuvers, and the effects of boom deployment. While this analysis is applicable to any spin-stabilized spacecraft with flexible radial booms, the analysis was driven by the needs of the Radiation Belt Storm Probes (RBSP) spacecraft currently being designed at the Johns Hopkins University Applied Physics Laboratory, as part of NASA\textquoterights \textquotedblleftLiving With a Star\textquotedblright program. This paper provides an analytical treatment of the spacecraft dynamics. These theoretical predictions are verified using fully non-linear six degree-of-freedom simulations.

Shankar, Uday; McGee, Timothy; Kemp, Brian;

Published by:       Published on: 08/2009

YEAR: 2009     DOI: 10.2514/6.2009-6204

RBSP; Van Allen Probes



  1