• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 3 entries in the Bibliography.

Showing entries from 1 through 3


A statistical analysis of duration and frequency chirping rate of falling tone chorus

AbstractThe duration (τ) and chirping rate (Γ) of whistler mode chorus waves are two of the most important properties to understand chorus generation mechanism and to quantify effects of nonlinear wave particle interactions on radiation belt electron acceleration. In this study, we perform the first statistical analysis of the duration and chirping rate of falling tone chorus elements using Van Allen Probes data.We found that τ increases and Γ decreases with increasing L-shell, although the dependence is weak. The duration from dawnside and dayside have similar distributions, which is a bit longer than those from duskside and nightside. However, Γ has little dependence on MLT. The relation between τ and Γ shows that τ scales with Γ as , supporting one of the previous theoretical models of rising tone chorus in Teng et al.(2017). Our results should provide important insights to deepen our understanding of falling tone chorus excitation.

Xie, Yi; Teng, Shangchun; Wu, Yifan; Tao, Xin;

Published by: Geophysical Research Letters      Published on: 09/2021

YEAR: 2021     DOI:

chorus waves; falling tone; Frequency chirping; Van Allen Probes

Periodic Rising and Falling Tone ECH Waves from Van Allen Probes Observations

AbstractElectron cyclotron harmonic (ECH) waves are known to precipitate plasma sheet electrons into the upper atmosphere and generate diffuse aurorae. In this study, we report quasi-periodic rising (3 events) and falling tone (22 events) ECH waves observed by Van Allen Probes, and evaluate their properties. These rising and falling tone ECH waves prefer to occur during quiet geomagnetic conditions over the dusk to midnight sector in relatively high-density (10–80 cm-3) regions. Their repetition periods increase with increasing L shell at L < 6, ranging from ∼60 to 110 s. The wave element duration varies from 10 s to 130 s peaking at ∼40 s and the chirping rate peaks at ∼50 (∼-50) Hz/s for rising (falling) tones. Our findings reveal intriguing features of the ECH wave properties, which provide new insights into their generation and potential effects on electron precipitation.

Shen, Xiao-Chen; Li, Wen; Ma, Qianli;

Published by: Geophysical Research Letters      Published on: 02/2021

YEAR: 2021     DOI:

ECH wave; falling tone; rising tone; Magnetosphere; plasma wave; Van Allen Probes


Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones

Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to \~1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT \~9\textendash14) midlatitude (|MLAT|>15\textdegree) region. An oscillating tone can behave either regularly or irregularly and can even transform into a nearly constant tone (with a relatively narrow frequency sweep range). We suggest that these highly coherent oscillating tones were generated naturally rather than being related to some artificial VLF transmitters. Possible scenarios for the generation of the oscillating tone chorus are as follows: (1) being nonlinearly triggered by the accompanying hiss-like bands or (2) being caused by the modulation of the wave source. The details of the generation and evolution of such a long-lived oscillating tone chorus need to be investigated both theoretically and experimentally in the future.

Gao, Zhonglei; Su, Zhenpeng; Chen, Lunjin; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2017GL073420

Chorus; falling tone; nonlinear generation; oscillating tone; rising tone; Van Allen Probes