• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 21 entries in the Bibliography.

Showing entries from 1 through 21


First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising tone chorus elements propagating from a near equatorial (Van Allen Probes) to an off-equatorial (Arase) satellite. The chorus is observed first on the more equatorial satellite and is found to be more oblique and significantly attenuated at the off-equatorial satellite. This is consistent with the prevailing theory of chorus propagation and with the idea that chorus must propagate from the equatorial source region to higher latitudes. Ray tracing of chorus at the observed frequencies confirms that these elements could be generated parallel to the field at the equator, and propagate through the medium unducted to Van Allen Probes A and then to Arase with the observed time delay, and have the observed obliquity and intensity at each satellite.

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI:

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes


Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt

We present the first statistical analysis with continuous data coverage and non-averaged amplitudes of the prevalence and distribution of high-amplitude (> 5 mV/m) whistler-mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0-7 where they are present 1-4\% of the time. During high geomagnetic activity, high-amplitude whistler-mode wave occurrence rises above 30\% in some regions. During these active times the plasmasphere erodes to lower L and high-amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5-4) in the pre-dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact non-linearly with electrons. Results also may provide clues regarding the mechanisms which result in growth to large amplitudes.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Geophysical Research Letters      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2019GL082292

Chorus; Radiation belt; Van Allen belt; Van Allen Probes; Whistler waves


Precipitation of radiation belt electrons by EMIC waves with conjugated observations of NOAA and Van Allen satellites

In this letter, we present unique conjugated satellite observations of MeV relativistic electron precipitation caused by electromagnetic ion cyclotron (EMIC) waves. On the outer boundary of the plasmasphere, the Van Allen probe observed EMIC waves. At ionospheric altitudes, the NOAA 16 satellite at the footprint of Van Allen probe simultaneously detected obvious flux enhancements for precipitating >MeV radiation belt electrons, but not for precipitating MeV radiation belt electrons. Our result provides a direct magnetic conjugated observational link between in-situ inner magnetospheric EMIC waves and precipitation of MeV relativistic electrons at ionospheric altitudes so as to reveal that EMIC waves can solely scatter MeV radiation belt electrons into the loss cone so as to precipitate into the atmosphere.

Yuan, Zhigang; Liu, Kun; Yu, Xiongdong; Yao, Fei; Huang, Shiyong; Wang, Dedong; Ouyang, Zhihai;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080481

Chorus; EMIC waves; Particle precipitation; Radiation belt; ring current; Van Allen Probes; Wave-particle interaction

Generation process of large-amplitude upper band chorus emissions observed by Van Allen Probes

We analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the EMFISIS (Electric and Magnetic Field Instrument Suite and Integrated Science) instrument package onboard the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the HOPE (Helium Oxygen Proton Electron) instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between the threshold and optimum amplitudes. In the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.

Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA024782

Chorus; energetic electrons; nonlinear wave-particle interaction; observation; Radiation belt; Van Allen Probes


Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts

An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode chorus elements in the Van Allen radiation belts. Specifically, we develop signal processing techniques based on the radon transform that disambiguate chorus elements with a dominant sweep rate against hiss-like chorus. We present representative results validating our techniques and also provide statistical characterization of detected chorus elements across a case study of a 6 s epoch.

Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017JA023949

Chorus; Van Allen Probes; Van Allen radiation belt

Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have the energy dispersion expected for trapped electrons bouncing between mirror points. This confirms that the electrons are rapidly (nonlinearly) scattered into the loss cone by a coherent interaction with the large amplitude (up to \~900 pT) chorus. Comparison of observed time-averaged microburst flux and estimated total electron drift shell content at L = 5.6 indicate that microbursts may represent a significant source of energetic electron loss in the outer radiation belt.

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes

Shock-induced disappearance and subsequent recovery of plasmaspheric hiss: Coordinated observations of RBSP, THEMIS and POES satellites

Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its dominant generation mechanism. In the pre-shock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainly originated from the dayside chorus waves. On arrival of the shock, the removal of pre-existing dayside chorus and the insignificant variation of low-frequency wave instability caused the prompt disappearance of hiss waves. In the next few hours, the local instability in the plasmasphere was greatly enhanced due to the substorm injection of hot electrons. The enhancement of local instability likely played a dominant role in the temporary recovery of hiss with unidirectional Poynting fluxes. These temporarily recovered hiss waves were generated near the equator and then propagated toward higher latitudes. In contrast, both the enhancement of local instability and the recurrence of pre-noon chorus contributed to the substantial recovery of hiss with bidirectional Poynting fluxes.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Reeves, G.; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024470

Chorus; interplanetary shock; Plasmaspheric Hiss; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones

Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to \~1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT \~9\textendash14) midlatitude (|MLAT|>15\textdegree) region. An oscillating tone can behave either regularly or irregularly and can even transform into a nearly constant tone (with a relatively narrow frequency sweep range). We suggest that these highly coherent oscillating tones were generated naturally rather than being related to some artificial VLF transmitters. Possible scenarios for the generation of the oscillating tone chorus are as follows: (1) being nonlinearly triggered by the accompanying hiss-like bands or (2) being caused by the modulation of the wave source. The details of the generation and evolution of such a long-lived oscillating tone chorus need to be investigated both theoretically and experimentally in the future.

Gao, Zhonglei; Su, Zhenpeng; Chen, Lunjin; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2017GL073420

Chorus; falling tone; nonlinear generation; oscillating tone; rising tone; Van Allen Probes

Bayesian Spectral Analysis of Chorus Sub-Elements from the Van Allen Probes

We develop a Bayesian spectral analysis technique that calculates the probability distribution functions of a superposition of wave-modes each described by a linear growth rate, a frequency and a chirp rate. The Bayesian framework has a number of advantages, including 1) reducing the parameter space by integrating over the amplitude and phase of the wave, 2) incorporating the data from each channel to determine the model parameters such as frequency which leads to high resolution results in frequency and time, 3) the ability to consider the superposition of waves where the wave-parameters are closely spaced, 4) the ability to directly calculate the expectation value of wave parameters without resorting to ensemble averages, 5) the ability to calculate error bars on model parameters. We examine one rising-tone chorus element in detail from a disturbed time on November 14, 2012 using burst mode waveform data of the three components of the electric and magnetic field from the EMFISIS instrument on board NASA\textquoterights Van Allen Probes. The results demonstrate that sub-elements are likely composed of almost linear waves that are nearly parallel propagating with continuously changing wave parameters such as frequency and wave-vector. Between sub-elements the wave parameters of the dominant mode undergoes a discrete change in frequency and wave-vector. Near the boundary of sub-elements multiple waves are observed such that the evolution of the waves is reminiscent of wave-wave processes such as parametric decay or nonlinear induced scattering by particles. These nonlinear processes may affect the saturation of the whistler-mode chorus instability.

Crabtree, Chris; Tejero, Erik; Ganguli, Gurudas; Hospodarsky, George; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023547

Bayesian Spectral; Chorus; Van Allen Probes; whistler

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappearances of plasmaspheric hiss and then exohiss.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappearances of plasmaspheric hiss and then exohiss.

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation


Formation process of relativistic electron flux through interaction with chorus emissions in the Earth\textquoterights inner magnetosphere

We perform test particle simulations of energetic electrons interacting with whistler mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and equatorial pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green\textquoterights function for one cycle of chorus wave-particle interaction. We obtain the Green\textquoterights functions for the energy range 10 keV\textendash6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green\textquoterights functions with the distribution function of the injected electrons repeatedly, we follow a long-time evolution of the distribution function. We find that the energetic electrons are accelerated effectively by relativistic turning acceleration and ultrarelativistic acceleration through nonlinear trapping by chorus emissions. Further, these processes result in the rapid formation of a dumbbell distribution of highly relativistic electrons within a few minutes after the onset of the continuous injection of 10\textendash30 keV electrons.

Omura, Yoshiharu; Miyashita, Yu; Yoshikawa, Masato; Summers, Danny; Hikishima, Mitsuru; Ebihara, Yusuke; Kubota, Yuko;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021563

Chorus; nonlinear wave-particle interaction; Particle acceleration; Radiation belts; relativistic electrons; simulation

Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere

Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These results are important for understanding the generation mechanism of chorus and choosing parameters in simulations that model the acceleration and loss of electrons by wave-particle interactions.

Shue, Jih-Hong; Hsieh, Yi-Kai; W. Y. Tam, Sunny; Wang, Kaiti; Fu, Hui; Bortnik, Jacob; Tao, Xin; Hsieh, Wen-Chieh; Pi, Gilbert;

Published by: Geophysical Research Letters      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015GL066107

Chorus; local time distribution; repetition period

Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study

We show the first evidence for locally excited chorus at frequencies below 0.1 fce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5 fce and f/fce decreases rapidly, often to frequencies well below 0.1 fce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

Cattell, C.; Breneman, A.; Thaller, S.; Wygant, J.; Kletzing, C.; Kurth, W.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065565

Chorus; outer radiation belt; Van Allen Probes

A computational and theoretical investigation of nonlinear wave-particle interactions in oblique whistlers

Most previous work on nonlinear wave-particle interactions between energetic electrons and VLF waves in the Earth\textquoterights magnetosphere has assumed parallel propagation, the underlying mechanism being nonlinear trapping of cyclotron resonant electrons in a parabolic magnetic field inhomogeneity. Here nonlinear wave-particle interaction in oblique whistlers in the Earth\textquoterights magnetosphere is investigated. The study is nonself-consistent and assumes an arbitrarily chosen wave field. We employ a \textquotedblleftcontinuous wave\textquotedblright wave field with constant frequency and amplitude, and a model for an individual VLF chorus element. We derive the equations of motion and trapping conditions in oblique whistlers. The resonant particle distribution function, resonant current, and nonlinear growth rate are computed as functions of position and time. For all resonances of order n, resonant electrons obey the trapping equation, and provided the wave amplitude is big enough for the prevailing obliquity, nonlinearity manifests itself by a \textquotedbllefthole\textquotedblright or \textquotedbllefthill\textquotedblright in distribution function, depending on the zero-order distribution function and on position. A key finding is that the n = 1 resonance is relatively unaffected by moderate obliquity up to 25\textdegree, but growth rates roll off rapidly at high obliquity. The n = 1 resonance saturates due to the adiabatic effect and here reaches a maximum growth at ~20 pT, 2000 km from the equator. Damping due to the n = 0 resonance is not subject to adiabatic effects and maximizes at some 8000 km from the equator at an obliquity ~55\textdegree.

Nunn, David; Omura, Yoshiharu;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020898

Chorus; nonlinear process; oblique propagation; simulation; Wave-particle interaction; whistler

First Evidence for Chorus at a Large Geocentric Distance as a Source of Plasmaspheric Hiss: Coordinated THEMIS and Van Allen Probes Observation

Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed in the outer plasmasphere (L ~ 5.5). Ray tracing indicates that a subset of chorus can propagate into the observed location of hiss on a timescale of ~ 5-6 s, in excellent agreement with the observed time lag between chorus and hiss. This provides quantitative support that chorus from large L-shells, where it was previously considered unable to propagate into the plasmasphere, can in fact be the source of hiss.

Li, W.; Chen, L.; Bortnik, J.; Thorne, R.; Angelopoulos, V.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014GL062832

Chorus; hiss; wave propagation; Van Allen Probes


Wave normal angles of whistler-mode chorus rising and falling tones

We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (\textpm20\textdegree), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk\~40\textdegree. Below θk\~40\textdegree, the average value for θk is predominantly field aligned, but slightly increasing with frequency toward half of fc,e (θk up to 20\textdegree). Above half of fc,e, the average θk is again decreasing with frequency. Above θk\~40\textdegree, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for θk>40\textdegree and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at θk>40\textdegree, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

Taubenschuss, Ulrich; Khotyaintsev, Yuri; ik, Ondrej; Vaivads, Andris; Cully, Christopher; Le Contel, Olivier; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020575

Chorus; wave normal

Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations

Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell (PIC) simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from HOPE instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper-band chorus, and that the hot component drives the electromagnetic lower-band chorus; the gap at \~ Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.

Fu, Xiangrong; Cowee, Misa; Friedel, Reinhard; Funsten, Herbert; Gary, Peter; Hospodarsky, George; Kletzing, Craig; Kurth, William; Larsen, Brian; Liu, Kaijun; MacDonald, Elizabeth; Min, Kyungguk; Reeves, Geoffrey; Skoug, Ruth; Winske, Dan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020364

Chorus; HOPE; particle-in-cell simulation; Van Allen Probes

Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign

We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17\textendash25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly within a period of 1 h without corresponding magnetic pulsations. QP emissions showed positive correlation between amplitude and frequency sweep rate, similarly to rising-tone elements. We found an event of nearly simultaneous enhancements of QP emissions and Pc1/electromagnetic ion cyclotron wave intensities, suggesting that the temperature anisotropy of electrons and ions developed simultaneously at the equatorial plane of the magnetosphere. We also found QP emissions whose intensity suddenly increased in association with storm sudden commencement without changing their frequency. Falling-tone ELF/VLF emissions were observed with their rate of frequency change varying from 0.7 to 0.05 kHz/s over 10 min. Bursty-patch emissions in the lower and upper frequency bands are often observed during magnetically disturbed periods. Clear systematic correlation between these various ELF/VLF emissions and cosmic noise absorption was not obtained throughout the campaign period. These observations indicate several previously unknown features of ELF/VLF emissions in subauroral latitudes and demonstrate the importance of continuous measurements for monitoring temporal variations in these emissions.

Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020161

Chorus; ELF/VLF; Radiation belts; subauroral latitudes; wave-particle interactions

Generation of Unusually Low Frequency Plasmaspheric Hiss

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a single equatorial crossing. Propagation characteristics aided by the sharp density gradient associated with the plasmapause, however, can enable these low frequency waves to undergo cyclic ray paths, which return to the unstable region leading to repeated amplification to yield sufficient net wave gain (>40 dB) to allow waves to grow from the thermal noise.

Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL060628

Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes

Statistical analysis of electron lifetimes at GEO: Comparisons with chorus-driven losses

The population of electrons in the Earth\textquoterights outer radiation belt increases when the magnetosphere is exposed to high-speed streams of solar wind, coronal mass ejections, magnetic clouds, or other disturbances. After this increase, the number of electrons decays back to approximately the initial population. This study statistically analyzes the lifetimes of the electron at Geostationary Earth Orbit (GEO) from Los Alamos National Laboratory electron flux data. The decay rate of the electron fluxes are calculated for 14 energies ranging from 24 keV to 3.5 MeV to identify a relationship between the lifetime and energy of the electrons. The statistical data show that electron lifetimes increase with energy. Also, the statistical results show a good agreement up to \~1 MeV with an analytical model of lifetimes, where electron losses are caused by their resonant interaction with oblique chorus waves, using average wave intensities obtained from Cluster statistics. However, above 500 keV, the measured lifetimes increase with energy becomes less steep, almost stopping. This could partly stem from the difficultly of identifying lifetimes larger than 10 days, for high energy, with the methods and instruments of the present study at GEO. It could also result from the departure of the actual geomagnetic field from a dipolar shape, since a compressed field on the dayside should preferentially increase chorus-induced losses at high energies. However, during nearly quiet geomagnetic conditions corresponding to lifetime measurement periods, it is more probably an indication that outward radial diffusion imposes some kind of upper limit on lifetimes of high-energy electrons near geostationary orbit.

Boynton, R.; Balikhin, M.; Mourenas, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA019920

Chorus; electron lifetimes; electron losses; oblique waves