Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Van Allen Probes observations of cross-scale coupling between electromagnetic ion cyclotron waves and higher-frequency wave modes



AuthorColpitts, C.; Cattell, C.; Engebretson, M.; Broughton, M.; Tian, S.; Wygant, J.; Breneman, A.; Thaller, S.;
KeywordsEMIC; Modulation; precipitation; Radiation belt; Van Allen Probes; wave; whistler
AbstractWe present observations of higher-frequency (~50\textendash2500 Hz, ~0.1\textendash0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5\textendash2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument\textquoterights burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves drops to the instrument noise level once every EMIC wave cycle. Such modulation could significantly impact wave-particle interactions such as acceleration and pitch angle scattering, which are crucial in the formation and depletion of the radiation belts. We present one case study with broadband, high-frequency waves observed to be modulated by EMIC waves repeatedly over a 2 h time span on both spacecraft. Finally, we show two additional case studies where other high-frequency wave modes exhibit similar modulation.
Year of Publication2016
JournalGeophysical Research Letters
Volume
Number of Pages
Section
Date Published11/2016
ISBN
URLhttp://onlinelibrary.wiley.com/doi/10.1002/2016GL071566/full
DOI10.1002/2016GL071566